Second-Order Rate of Constant-Composition Codes for the Gel'fand-Pinsker Channel

Jonathan Scarlett

Abstract—This paper presents an achievable second-order coding rate for the discrete memoryless Gel'fand-Pinkser channel. The result is obtained using constant-composition random coding, and by using an asymptotically negligible fraction of the block to transmit the type of the state sequence.

I. INTRODUCTION

In this paper, we present an achievable second-order coding rate [1]–[3] for channel coding with a random state known non-causally at the encoder, as studied by Gel'fand and Pinsker [4]. The alphabets of the input, output and state are denoted by \mathcal{X} , \mathcal{Y} and \mathcal{S} respectively, and each are assumed to be finite. The channel transition law is given by $W^n(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{s}) \triangleq$ $\prod_{i=1}^n W(y_i|x_i, s_i)$, where n is the block length. The state sequence $\boldsymbol{S} = (S_1, \dots, S_n)$ is assumed to be independent and identically distributed (i.i.d.) according to a distribution $\pi(s)$. The capacity is given by [4]

$$C = \max_{\mathcal{U}, Q_{U|S}, \phi(\cdot, \cdot)} I(U; Y) - I(U; S), \tag{1}$$

where the mutual informations are with respect to

$$P_{SUY}(s, u, y) = \pi(s)Q_{U|S}(u|s)W(y|\phi(u, s), s)$$
(2)

and the maximum is over all finite alphabets \mathcal{U} , conditional distributions $Q_{U|S}$ and functions $\phi : \mathcal{U} \times S \to \mathcal{X}$.

We say that a triplet (n, M, ϵ) is achievable if there exists a code with block length n containing at least M messages and yielding an average error probability not exceeding ϵ , and we define $M^*(n, \epsilon) \triangleq \max \{M : (n, M, \epsilon) \text{ is achievable}\}$. Letting $P_{Y|U}, P_Y$, etc. denote the marginals of (2), we define the information densities

$$i(u,s) \triangleq \log \frac{Q_{U|S}(u|s)}{P_U(u)} \tag{3}$$

$$i(u,y) \triangleq \log \frac{P_{Y|U}(y|u)}{P_Y(y)} \tag{4}$$

with a slight abuse of notation.

Theorem 1. Let \mathcal{U} , $Q_{U|S}$ and $\phi(\cdot, \cdot)$ by any set of capacityachieving parameters in (1), and let P_{SUY} , i(u, s) and i(u, y) be as given in (2)–(4) under these parameters. If $\mathbb{E}\left[\operatorname{Var}[i(U, Y) | U, S]\right] > 0$, then

$$\log M^*(n,\epsilon) \ge nC - \sqrt{nV} \mathsf{Q}^{-1}(\epsilon) + O(\log n), \quad (5)$$

for $\epsilon \in (0, 1)$, where

$$V \triangleq \mathbb{E}\left[\operatorname{Var}[i(U,Y) \mid U,S]\right] + \operatorname{Var}\left[\mathbb{E}[i(U,Y) - i(U,S) \mid S]\right]$$
(6)

 $= \operatorname{Var}[i(U,Y) - i(U,S)].$ (7)

Proof: We provide a number of preliminary results in Section II, and present the proof in Section III.

It should be noted that the equality in (7) holds under the capacity-achieving parameters, but more generally (7) is at least as high as (6), with strict inequality possible for suboptimal choices of $Q_{U|S}$.

To our knowledge, the only previous result on the secondorder asymptotics for the present problem is that of Watanabe *et al.* [5] and Yassaee *et al.* [6], who used i.i.d. random coding. In [7], we show that for $\epsilon < \frac{1}{2}$ our second-order term is at least as good as that of [5], [6], with strict improvement possible. Furthermore, we show in [7] that Theorem 1 recovers, as a special case, the dispersion for channels with i.i.d. state known at both the encoder and decoder, which was derived in [8].

Notation: Bold symbols are used for vectors and matrices (e.g. x), and the corresponding *i*-th entry of a vector is denoted with a subscript (e.g. x_i). The marginals of a joint distribution P_{XY} are denoted by P_X and P_Y . The empirical distribution (i.e. type [9, Ch. 2]) of a vector x is denoted by \hat{P}_x . The set of all types of length n on an alphabet \mathcal{X} is denoted by $\mathcal{P}_n(\mathcal{X})$. The set of all sequences of length n with a given type P_X is denoted by $T^n(P_X)$, and similarly for joint types. We make use of the standard asymptotic notations $O(\cdot)$ and $o(\cdot)$.

II. PRELIMINARY RESULTS

In this section, we present a number of preliminary results which will prove useful in the proof of Theorem 1. We assume that \mathcal{U} , $Q_{U|S}$ and $\phi(\cdot, \cdot)$ achieve the capacity in (1).

A. A Genie-Aided Setting

We prove Theorem 1 by first proving the following result for a genie-aided setting.

Theorem 2. Theorem 1 holds true in the case that the empirical distribution \hat{P}_{S} of S is known at the decoder.

To see that Theorem 2 implies Theorem 1, we use a technique which was proposed in [10]. We use the first $g(n) = K_0 \log(n+1)$ symbols of the block to transmit the

J. Scarlett is with the Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, U.K. (e-mail: jmscarlett@gmail.com).

This work has been funded in part by the European Research Council under ERC grant agreement 259663, by the European Union's 7th Framework Programme (PEOPLE-2011-CIG) under grant agreement 303633 and by the Spanish Ministry of Economy and Competitiveness under grant TEC2012-38800-C03-03.

type of the remaining $\tilde{n} = n - g(n)$ symbols. Using Gallager's random-coding bound [11, Sec. 5.6] and the fact that the number of such types is upper bounded by $(n + 1)^{|S|-1}$, it is easily shown that there exists a choice of K_0 such that the decoder estimates the state type correctly with probability $O(\frac{1}{n})$. Thus, $(n - O(\log n), M, \epsilon - O(\frac{1}{n}))$ -achievability in the genie-aided setting implies (n, M, ϵ) -achievability in the absence of the genie. By performing a Taylor expansion of the square root and $Q^{-1}(\cdot)$ function in (5), we obtain the desired result.

B. A Typical Set

We define a typical set of state types given by

$$\tilde{\mathcal{P}}_n = \left\{ P_S \in \mathcal{P}_n(\mathcal{S}) : \| P_S - \pi \|_{\infty} \le \sqrt{\frac{\log n}{n}} \right\}.$$
 (8)

We will see the second-order performance is unaffected by types falling outside $\tilde{\mathcal{P}}_n$, due to the fact that [8, Lemma 22]

$$\mathbb{P}[\hat{P}_{\boldsymbol{S}} \notin \tilde{\mathcal{P}}_n] = O\left(\frac{1}{n^2}\right). \tag{9}$$

C. Approximations of Distributions

For each $P_S \in \mathcal{P}_n(\mathcal{S})$, we define an approximation $Q_{U|S,n}^{(P_S)}$ of $Q_{U|S}$ as follows. For each $s \in \mathcal{S}$ with $P_S(s) > 0$, let $Q_{U|S,n}^{(P_S)}(\cdot|s)$ be a type in $\mathcal{P}_{nP_S(s)}(\mathcal{U})$ whose probabilities are $\frac{1}{nP_S(s)}$ -close to $Q_{U|S}$ in terms of L_∞ norm, and such that $Q_{U|S,n}^{(P_S)}(u|s) = 0$ wherever $Q_{U|S}(u|s) = 0$. If $P_S(s) = 0$ then $Q_{U|S,n}^{(P_S)}(\cdot|s)$ is arbitrary (e.g. uniform). Assuming without loss of generality that $\pi(s) > 0$ for all $s \in \mathcal{S}$, we have from (8) that $\min_s nP_S(s)$ grows linearly in n for all $P_S \in \tilde{\mathcal{P}}_n$. Thus,

$$\left| Q_{U|S}(u|s) - Q_{U|S,n}^{(P_S)}(u|s) \right| = O\left(\frac{1}{n}\right)$$
(10)

uniformly in $P_S \in \mathcal{P}_n$ and (s, u).

(D)

We will make use of the following joint distributions:

$$P_{SUY}^{(P_S)}(s, u, y) \triangleq P_S(s)Q_{U|S}(u|s)W(y|\phi(u, s), s)$$
(11)

$$P_{SUY,n}^{(P_S)}(s, u, y) \triangleq P_S(s) Q_{U|S,n}^{(P_S)}(u|s) W(y|\phi(u, s), s).$$
(12)

Using (10), we immediately obtain that

$$\left| P_{SUY}^{(P_S)}(s, u, y) - P_{SUY, n}^{(P_S)}(s, u, y) \right| = O\left(\frac{1}{n}\right)$$
(13)

uniformly in $P_S \in \tilde{\mathcal{P}}_n$ and (s, u, y).

D. A Taylor Expansion of the Mutual Information

Let $I^{(P_S)}(U;S)$ and $I^{(P_S)}(U;Y)$ denote mutual informations under the joint distribution $P_{USY}^{(P_S)}$ in (11), and define

$$I(P_S) \triangleq I^{(P_S)}(U;Y) - I^{(P_S)}(U;S).$$
 (14)

We observe from (1) that $C = I(\pi)$. The following Taylor expansion (about $P_S = \pi$) is proved in [7]:

$$I(P_S) = \tilde{I}(P_S) + \Delta(P_S), \tag{15}$$

where

$$\tilde{I}(P_S) \triangleq \sum_{s} P_S(s) \sum_{u} Q_{U|S}(u|s) \\ \times \left(\sum_{y} W(y|\phi(u,s),s) \log \frac{P_{Y|U}^{(\pi)}(y|u)}{P_Y^{(\pi)}(y)} - \log \frac{Q_{U|S}(u|s)}{P_U^{(\pi)}(u)} \right),$$
(16)

and

$$\max_{P_S \in \tilde{\mathcal{P}}_n} |\Delta(P_S)| \le \frac{K_1 \log n}{n} \tag{17}$$

for some constant K_1 .

III. PROOF OF THEOREM 1

As stated above, it suffices to prove Theorem 2. Thus, we assume that the state type P_S is known at the decoder.

1) Random-Coding Parameters: The parameters are the auxiliary alphabet \mathcal{U} , input distribution $Q_{U|S}$, function ϕ : $\mathcal{U} \times S \to \mathcal{X}$, and number of auxiliary codewords $L^{(P_S)}$ for each state type $P_S \in \mathcal{P}_n(S)$. We assume that \mathcal{U} , $Q_{U|S}$ and ϕ are capacity-achieving.

2) Codebook Generation: For each state type $P_S \in \mathcal{P}_n(S)$ and each message m, we randomly generate an auxiliary codebook $\{U^{(P_S)}(m,l)\}_{l=1}^{L^{(P_S)}}$, where each codeword is drawn independently according to the uniform distribution on the type class $T^n(P_{U,n}^{(P_S)})$ (see (12)). Each auxiliary codebook is revealed to the encoder and decoder.

3) Encoding and Decoding: Given the state sequence $S \in T^n(P_S)$ and message m, the encoder sends

$$\phi^{n}(\boldsymbol{U},\boldsymbol{S}) \triangleq \big(\phi(U_{1},S_{1}),\cdots,\phi(U_{n},S_{n})\big), \quad (18)$$

where U is an auxiliary codeword $U^{(P_S)}(m, l)$ with l chosen such that $(S, U) \in T^n(P_{SU,n}^{(P_S)})$, with an error declared if no such auxiliary codeword exists. Given y and the state type P_S , the decoder estimates m according to the pair (\tilde{m}, \tilde{l}) whose corresponding sequence $U^{(P_S)}(\tilde{m}, \tilde{l})$ maximizes

$$i_n^{(P_S)}(\boldsymbol{u}, \boldsymbol{y}) \triangleq \sum_{i=1}^n i^{(P_S)}(u_i, y_i),$$
(19)

where

$$i^{(P_S)}(u_i, y_i) \triangleq \log \frac{P_{Y|U}^{(P_S)}(y|u)}{P_Y^{(P_S)}(y)}$$
 (20)

with $P_{SUY}^{(P_S)}$ defined in (11). It should be noted that $P_{SUY}^{(\pi)}$ coincides with the distribution in (2), and hence $i^{(\pi)}(u, y)$ coincides with (4).

We consider the events

$$\mathcal{E}_1 \triangleq \left\{ \text{No } l \text{ yields } (\boldsymbol{S}, \boldsymbol{U}^{(P_S)}(m, l)) \in T^n(P_{SU,n}^{(P_S)}) \right\}$$
(21)

$$\mathcal{E}_2 \triangleq \left\{ \text{Decoder chooses a message } \tilde{m} \neq m \right\}.$$
 (22)

It follows from these definitions and (9) that the overall random-coding error probability \overline{p}_e satisfies

$$\overline{p}_{e} \leq \sum_{P_{S} \in \tilde{\mathcal{P}}_{n}} \mathbb{P}[\hat{P}_{S} = P_{S}] \left(\mathbb{P}[\mathcal{E}_{1} \mid \hat{P}_{S} = P_{S}] + \mathbb{P}[\mathcal{E}_{2} \mid \hat{P}_{S} = P_{S}, \mathcal{E}_{1}^{c}] \right) + O\left(\frac{1}{n^{2}}\right). \quad (23)$$

4) Analysis of \mathcal{E}_1 : We study the probability of \mathcal{E}_1 conditioned on S having a given type $P_S \in \tilde{\mathcal{P}}_n$. Combining (13) with a standard property of types [12, Eq. (18)], each of the auxiliary codewords induces the joint type $P_{SU,n}^{(P_S)}$ with probability at least $p_0(n)^{-1}e^{-nI^{(P_S)}(U;S)}$, where $I^{(P_S)}(U;S)$ is defined in Section II-D, and $p_0(n)$ is polynomial in n. Since the codewords are independent, we have

$$\mathbb{P}[\mathcal{E}_{1} | \hat{P}_{S} = P_{S}] \leq \left(1 - p_{0}(n)^{-1} e^{-nI^{(P_{S})}(U;S)}\right)^{L^{(P_{S})}} (24)$$

$$\leq \exp\left(-p_{0}(n)^{-1} e^{-n\left(I^{(P_{S})}(U;S) - R_{L}^{(P_{S})}\right)}\right), (25)$$

where (25) follows using $1 - \alpha \le e^{-\alpha}$ and defining

$$R_L^{(P_S)} \triangleq \frac{1}{n} \log L^{(P_S)}.$$
(26)

Choosing

$$R_L^{(P_S)} = I^{(P_S)}(U;S) + K_2 \frac{\log n}{n}$$
(27)

with K_2 equal to one plus the degree of the polynomial $p_0(n)$, we obtain from (25) that

$$\mathbb{P}\big[\mathcal{E}_1 \,|\, P_S\big] \le e^{-\psi n} \tag{28}$$

for some $\psi > 0$ and sufficiently large n.

5) Analysis of \mathcal{E}_2 : We study the probability of \mathcal{E}_2 conditioned on S having a given type $P_S \in \tilde{\mathcal{P}}_n$, and also conditioned on \mathcal{E}_1^c . By symmetry, all $(s, u) \in T^n(P_{SU,n}^{(P_S)})$ are equally likely, and hence the conditional distribution given $\hat{P}_S = P_S$ and \mathcal{E}_1^c of the state sequence S, auxiliary codeword U, and received sequence Y is given by

$$(\boldsymbol{S}, \boldsymbol{U}, \boldsymbol{Y}) \sim P_{\boldsymbol{S}\boldsymbol{U}}^{(P_S)}(\boldsymbol{s}, \boldsymbol{u}) W^n(\boldsymbol{y} | \phi^n(\boldsymbol{u}, \boldsymbol{s}), \boldsymbol{s}),$$
(29)

where $P_{SU}^{(P_S)}$ is uniform on the type class:

$$P_{\boldsymbol{SU}}^{(P_S)}(\boldsymbol{s}, \boldsymbol{u}) \triangleq \frac{1}{\left|T^n(P_{SU,n}^{(P_S)})\right|} \mathbb{1}\left\{(\boldsymbol{s}, \boldsymbol{u}) \in T^n(P_{SU,n}^{(P_S)})\right\}.$$
(30)

Let $P_{\mathbf{Y}}^{(P_S)}(\mathbf{y}) \triangleq \sum_{\mathbf{u},s} P_{\mathbf{US}}^{(P_S)}(\mathbf{u},s) W^n(\mathbf{y}|\phi^n(\mathbf{u},s),s)$ be the corresponding output distribution. Using a standard change of measure from constant-composition to i.i.d. (e.g. see [9, Ch. 2]), we can easily show that

$$P_{\boldsymbol{Y}}^{(P_S)}(\boldsymbol{y}) \le p_1(n) \prod_{i=1}^n P_Y^{(P_S)}(y_i),$$
(31)

where $p_1(n)$ is polynomial in n.

Recall that the decoder maximizes $i_n^{(P_S)}$ given in (19). Using a well-known threshold-based non-asymptotic bound [2], we have for any $\gamma^{(P_S)}$ that

$$\mathbb{P}[\mathcal{E}_{2} | \hat{P}_{\boldsymbol{S}} = P_{S}, \mathcal{E}_{1}^{c}] \leq \mathbb{P}\left[i_{n}^{(P_{S})}(\boldsymbol{U}, \boldsymbol{Y}) \leq \gamma^{(P_{S})}\right] \\ + ML^{(P_{S})} \mathbb{P}\left[i_{n}^{(P_{S})}(\overline{\boldsymbol{U}}, \boldsymbol{Y}) > \gamma^{(P_{S})}\right], \quad (32)$$

where $\overline{U} \sim P_{U}^{(P_{S})}$ independently of (S, U, Y). Using the change of measure given in (31), we can apply standard steps (e.g. see [3]) to upper bound the second term in

(32) by $p_2(n)ML^{(P_S)}e^{-\gamma^{(P_S)}}$, where $p_2(n)$ is polynomial in *n*. We can ensure that this term is $O(\frac{1}{n})$ by choosing $\gamma^{(P_S)} = \log ML^{(P_S)} + K_3 \log n$, where K_3 is one higher than the degree of $p_2(n)$. Under this choice, and defining $K_4 \triangleq K_2 + K_3$, we obtain from (27) and (32) that

$$\mathbb{P}[\mathcal{E}_2 | \hat{P}_{\boldsymbol{S}} = P_S] \leq \mathbb{P}\left[i_n^{(P_S)}(\boldsymbol{U}, \boldsymbol{Y}) \leq \log M + nI^{(P_S)}(\boldsymbol{U}; S) + K_4 \log n\right] + O\left(\frac{1}{n}\right). \quad (33)$$

6) Application of the Berry-Esseen Theorem: Combining (28) and (33), we have for all $P_S \in \tilde{\mathcal{P}}_n$ that

$$\mathbb{P}\big[\mathcal{E}_1 \cup \mathcal{E}_2 \,|\, \hat{P}_{\boldsymbol{S}} = P_S\big] \le \mathbb{P}\big[i_n^{(P_S)}(\boldsymbol{U}, \boldsymbol{Y}) \le \log M \\ + nI^{(P_S)}(U; S) + K_4 \log n\big] + O\Big(\frac{1}{n}\Big). \quad (34)$$

In order to apply the Berry-Esseen theorem to the right-hand side of (34), we first compute the mean and variance of $i_n^{(P_S)}(\boldsymbol{U},\boldsymbol{Y})$, defined according to (19) and (29). The required third moment can easily be uniformly bounded in terms of the alphabet sizes [13, Appendix D]. We will use the fact that, by the symmetry of the constant-composition distribution in (30), the statistics of $i_n^{(P_S)}(\boldsymbol{U},\boldsymbol{Y})$ are unchanged upon conditioning on $(\boldsymbol{S}, \boldsymbol{U}) = (\boldsymbol{s}, \boldsymbol{u})$ for some $(\boldsymbol{s}, \boldsymbol{u}) \in T^n(P_{SU,n}^{(P_S)})$. Using the joint distribution $P_{SUY,n}^{(P_S)}$ defined in (12), it follows that

$$\mathbb{E}\left[i_n^{(P_S)}(\boldsymbol{U},\boldsymbol{Y})\right] = n \sum_{u,y} P_{UY,n}^{(P_S)}(u,y) i^{(P_S)}(u,y)$$
(35)

$$= nI^{(P_S)}(U;Y) + O(1), (36)$$

where (35) follows by expanding the expectation as a sum from 1 to n, and (36) follows from (13) and the definitions of $i^{(P_S)}(u, y)$ and $I^{(P_S)}(U; Y)$. A similar argument yields

$$\operatorname{Var}\left[i_{n}^{(P_{S})}(\boldsymbol{U},\boldsymbol{Y})\right] = n\mathbb{E}\left[\operatorname{Var}\left[i^{(P_{S})}(\boldsymbol{U},\boldsymbol{Y}) \mid \boldsymbol{U},\boldsymbol{S}\right]\right] + O(1)$$

$$\stackrel{(37)}{=} nV(P_{S}) + O(1). \tag{38}$$

$$\stackrel{\text{\tiny def}}{=} nV(P_S) + O(1). \tag{38}$$

It should be noted that $V(P_S)$ is bounded away for zero for $P_S \in \tilde{\mathcal{P}}_n$ and sufficiently large n, since $V(\pi) > 0$ by assumption in Theorem 1. Furthermore, the O(1) terms in (36) and (38) are uniform in $P_S \in \tilde{\mathcal{P}}_n$.

Using the definition of $I(P_S)$ in (14), we choose

$$\log M = nI(\pi) - K_4 \log n - \beta_n, \tag{39}$$

where β_n will be specified later, and will behave as $O(\sqrt{n})$. Combining (34), (36), (38) and (39), we have

$$\mathbb{P}\left[\mathcal{E}_{1} \cup \mathcal{E}_{2} \mid P_{\boldsymbol{S}} = P_{S}\right]$$

$$\leq \mathbb{P}\left[i_{n}^{(P_{S})}(\boldsymbol{U}, \boldsymbol{Y}) \leq nI(\pi) + nI^{(P_{S})}(\boldsymbol{U}; S) - \beta_{n}\right] + O\left(\frac{1}{n}\right).$$
(40)

$$\leq \mathsf{Q}\left(\frac{\beta_n + nI(P_S) - nI(\pi) + K_5}{\sqrt{nV(P_S) + K_6}}\right) + O\left(\frac{1}{\sqrt{n}}\right) \tag{41}$$

where (41) follows by conditioning on (S, U) = (s, u) for some $(s, u) \in T^n(P_{SU,n}^{(P_S)})$ (recall that this does not change the

statistics of $i_n^{(P_S)}(\boldsymbol{U}, \boldsymbol{Y})$), applying the Berry-Esseen theorem for independent and non-identically distributed variables [14, Sec. XVI.5], and introducing the constants K_5 and K_6 to represent the uniform O(1) terms in (36) and (38).

7) Averaging Over the State Type: Substituting (41) into (23), we have

$$\overline{p}_{e} \leq \sum_{P_{S} \in \tilde{\mathcal{P}}_{n}} \mathbb{P}[\hat{P}_{S} = P_{S}] \mathbb{Q}\left(\frac{\beta + nI(P_{S}) - nI(\pi)}{\sqrt{nV(P_{S})}}\right) + O\left(\frac{1}{\sqrt{n}}\right), \quad (42)$$

where we have factored the constants K_5 and K_6 into the remainder term using standard Taylor expansions along with the assumption $\beta_n = O(\sqrt{n})$; see [7] for details. Analogously to [8, Lemmas 17-18], we simplify (42) using two lemmas.

Lemma 1. For any $\beta_n = O(\sqrt{n})$, we have

$$\sum_{P_{S}\in\tilde{\mathcal{P}}_{n}} \mathbb{P}[\hat{P}_{S} = P_{S}] \mathbb{Q}\left(\frac{\beta_{n} + nI(P_{S}) - nI(\pi)}{\sqrt{nV(P_{S})}}\right)$$
$$\leq \sum_{P_{S}\in\tilde{\mathcal{P}}_{n}} \mathbb{P}[\hat{P}_{S} = P_{S}] \mathbb{Q}\left(\frac{\beta_{n} + nI(P_{S}) - nI(\pi)}{\sqrt{nV(\pi)}}\right) + O\left(\frac{\log n}{\sqrt{n}}\right)$$
(43)

Proof: This follows using standard Taylor expansions along with the definition of $\tilde{\mathcal{P}}_n$ in (8) and the fact that $V(P_S)$ is continuously differentiable at $P_S = \pi$; see [7].

Lemma 2. For any β_n , we have

$$\sum_{P_{S}\in\tilde{\mathcal{P}}_{n}} \mathbb{P}[\hat{P}_{S} = P_{S}] \mathbb{Q}\left(\frac{\beta_{n} + nI(P_{S}) - nI(\pi)}{\sqrt{nV(\pi)}}\right)$$
$$\leq \mathbb{Q}\left(\frac{\beta_{n}}{\sqrt{nV}}\right) + O\left(\frac{\log n}{\sqrt{n}}\right), \quad (44)$$

where V is defined in (6).

Proof: Using the expansion of $I(P_S)$ in terms of $\tilde{I}(P_S)$ and $\Delta(P_S)$ given in (15), along with the property given in (17), we can easily show that the left-hand side of (44) is upper bounded by

$$\sum_{P_S \in \tilde{\mathcal{P}}_n} \mathbb{P}[\hat{P}_S = P_S] \mathbb{Q}\left(\frac{\beta_n - nI(\pi) + n\tilde{I}(P_S)}{\sqrt{nV(\pi)}}\right) + O\left(\frac{\log n}{\sqrt{n}}\right).$$
(45)

Since $I(P_S)$ is written in the form $\sum_s P_S(s)\psi(s)$, a trivial generalization of [8, Lemma 18] gives

$$\sum_{P_S} \mathbb{P}[\hat{P}_{\boldsymbol{S}} = P_S] \mathbb{Q}\left(\frac{\beta_n + n\tilde{I}(P_S) - n\tilde{I}(\pi)}{\sqrt{nV(\pi)}}\right)$$
$$= \mathbb{Q}\left(\frac{\beta_n}{\sqrt{n\left(V(\pi) + V^*(\pi)\right)}}\right) + O\left(\frac{1}{\sqrt{n}}\right), \quad (46)$$

where $V^*(\pi) \triangleq \operatorname{Var}_{\pi}[\psi(S)]$. Using (16), we see that $\psi(S) = \mathbb{E}[i^{(\pi)}(U,Y) - i^{(\pi)}(U,S) | S]$, and it follows that $V(\pi) + V^*(\pi)$ is equal to V, defined in (6). The proof is concluded by expanding the summation in (45) to be over all types, and substituting (46).

Using (42) along with Lemmas 1 and 2, we have

$$\overline{p}_e \le \mathsf{Q}\bigg(\frac{\beta_n}{\sqrt{nV}}\bigg) + O\bigg(\frac{\log n}{\sqrt{n}}\bigg). \tag{47}$$

Setting $\overline{p}_e = \epsilon$ and solving for β_n , we obtain

$$\beta_n = \sqrt{nV} \mathsf{Q}^{-1}(\epsilon) + O(\log n). \tag{48}$$

Consistent with (42) and Lemma 1, we have $\beta_n = O(\sqrt{n})$. Substituting (48) into (39) yields the desired result with V of the form given in (6).

By analyzing the Karush-Kuhn-Tucker (KKT) corresponding to the maximization in (1), it can be shown that the equality in (7) holds under any $Q_{U|S}$ which maximizes the objective for a given pair (\mathcal{U}, ϕ) [7]. Since the parameters are capacityachieving by assumption, this completes the proof.

ACKNOWLEDGMENT

¹ I would like to thank Vincent Tan for many helpful comments and suggestions.

REFERENCES

- V. Strassen, "Asymptotische Abschätzungen in Shannon's Informationstheorie," in *Trans. 3rd Prague Conf. on Inf. Theory*, 1962, pp. 689–723, English Translation: http://www.math.wustl.edu/~luthy/strassen.pdf.
- [2] Y. Polyanskiy, V. Poor, and S. Verdú, "Channel coding rate in the finite blocklength regime," *IEEE Trans. Inf. Theory*, vol. 56, no. 5, pp. 2307– 2359, May 2010.
- [3] M. Hayashi, "Information spectrum approach to second-order coding rate in channel coding," *IEEE Trans. Inf. Theory*, vol. 55, no. 11, pp. 4947–4966, Nov. 2009.
- [4] S. I. Gelfand and M. S. Pinsker, "Coding for channel with random parameters," *Prob. Inf. Transm.*, vol. 9, no. 1, pp. 19–31, 1980.
- [5] S. Watanabe, S. Kuzuoka, and V. Y. F. Tan, "Non-asymptotic and secondorder achievability bounds for coding with side-information," 2013, http://arxiv.org/abs/1301.6467.
- [6] M. H. Yassaee, M. R. Aref, and A. Gohari, "A technique for deriving one-shot achievability results in network information theory," http://arxiv.org/abs/1303.0696.
- [7] J. Scarlett, "On the dispersions of the Gel'fand-Pinsker channel and dirty paper coding," 2013, submitted to *IEEE Trans. Inf. Theory* [arxiv: http://arxiv.org/abs/1309.6200].
- [8] M. Tomamichel and V. Y. F. Tan, "ε-capacities and secondorder coding rates for channels with general state," [Online: http://arxiv.org/abs/1305.6789].
- [9] I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems, 2nd ed. Cambridge University Press, 2011.
- [10] A. Somekh-Baruch and N. Merhav, "On the random coding error exponents of the single-user and the multiple-access Gel'fand-Pinsker channels," in *IEEE Int. Symp. Inf. Theory*, Chicago, IL, June 2004.
- [11] R. Gallager, Information Theory and Reliable Communication. John Wiley & Sons, 1968.
- [12] —, "Fixed composition arguments and lower bounds to error probability," http://web.mit.edu/gallager/www/notes/notes5.pdf.
- [13] V. Y. F. Tan and O. Kosut, "On the dispersions of three network information theory problems," 2012, arXiv:1201.3901v2 [cs.IT].
- [14] W. Feller, An introduction to probability theory and its applications, 2nd ed. John Wiley & Sons, 1971, vol. 2.