
Second-Order Rate of Constant-Composition
Codes for the Gel’fand-Pinsker Channel

Jonathan Scarlett

Abstract—This paper presents an achievable second-order cod-
ing rate for the discrete memoryless Gel’fand-Pinkser channel.
The result is obtained using constant-composition random coding,
and by using an asymptotically negligible fraction of the block
to transmit the type of the state sequence.

I. INTRODUCTION

In this paper, we present an achievable second-order coding
rate [1]–[3] for channel coding with a random state known
non-causally at the encoder, as studied by Gel’fand and Pinsker
[4]. The alphabets of the input, output and state are denoted
by X , Y and S respectively, and each are assumed to be
finite. The channel transition law is given by Wn(y|x, s) ,∏n
i=1W (yi|xi, si), where n is the block length. The state

sequence S = (S1, · · · , Sn) is assumed to be independent
and identically distributed (i.i.d.) according to a distribution
π(s). The capacity is given by [4]

C = max
U,QU|S ,φ(·,·)

I(U ;Y )− I(U ;S), (1)

where the mutual informations are with respect to

PSUY (s, u, y) = π(s)QU |S(u|s)W (y|φ(u, s), s) (2)

and the maximum is over all finite alphabets U , conditional
distributions QU |S and functions φ : U × S → X .

We say that a triplet (n,M, ε) is achievable if there exists
a code with block length n containing at least M messages
and yielding an average error probability not exceeding ε, and
we define M∗(n, ε) , max

{
M : (n,M, ε) is achievable

}
.

Letting PY |U , PY , etc. denote the marginals of (2), we define
the information densities

i(u, s) , log
QU |S(u|s)
PU (u)

(3)

i(u, y) , log
PY |U (y|u)

PY (y)
(4)

with a slight abuse of notation.

Theorem 1. Let U , QU |S and φ(·, ·) by any set of capacity-
achieving parameters in (1), and let PSUY , i(u, s) and
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i(u, y) be as given in (2)–(4) under these parameters. If
E
[
Var[i(U, Y ) |U, S]

]
> 0, then

logM∗(n, ε) ≥ nC −
√
nV Q−1(ε) +O(log n), (5)

for ε ∈ (0, 1), where

V , E
[
Var[i(U, Y ) |U, S]

]
+ Var

[
E[i(U, Y )− i(U, S) |S]

]
(6)

= Var[i(U, Y )− i(U, S)]. (7)

Proof: We provide a number of preliminary results in
Section II, and present the proof in Section III.

It should be noted that the equality in (7) holds under
the capacity-achieving parameters, but more generally (7) is
at least as high as (6), with strict inequality possible for
suboptimal choices of QU |S .

To our knowledge, the only previous result on the second-
order asymptotics for the present problem is that of Watanabe
et al. [5] and Yassaee et al. [6], who used i.i.d. random coding.
In [7], we show that for ε < 1

2 our second-order term is at least
as good as that of [5], [6], with strict improvement possible.
Furthermore, we show in [7] that Theorem 1 recovers, as a
special case, the dispersion for channels with i.i.d. state known
at both the encoder and decoder, which was derived in [8].

Notation: Bold symbols are used for vectors and matrices
(e.g. x), and the corresponding i-th entry of a vector is denoted
with a subscript (e.g. xi). The marginals of a joint distribution
PXY are denoted by PX and PY . The empirical distribution
(i.e. type [9, Ch. 2]) of a vector x is denoted by P̂x. The set of
all types of length n on an alphabet X is denoted by Pn(X ).
The set of all sequences of length n with a given type PX is
denoted by Tn(PX), and similarly for joint types. We make
use of the standard asymptotic notations O(·) and o(·).

II. PRELIMINARY RESULTS

In this section, we present a number of preliminary results
which will prove useful in the proof of Theorem 1. We assume
that U , QU |S and φ(·, ·) achieve the capacity in (1).

A. A Genie-Aided Setting

We prove Theorem 1 by first proving the following result
for a genie-aided setting.

Theorem 2. Theorem 1 holds true in the case that the
empirical distribution P̂S of S is known at the decoder.

To see that Theorem 2 implies Theorem 1, we use a
technique which was proposed in [10]. We use the first
g(n) = K0 log(n + 1) symbols of the block to transmit the



type of the remaining ñ = n−g(n) symbols. Using Gallager’s
random-coding bound [11, Sec. 5.6] and the fact that the
number of such types is upper bounded by (n + 1)|S|−1, it
is easily shown that there exists a choice of K0 such that
the decoder estimates the state type correctly with probability
O
(
1
n

)
. Thus,

(
n − O(log n),M, ε − O

(
1
n

))
-achievability in

the genie-aided setting implies (n,M, ε)-achievability in the
absence of the genie. By performing a Taylor expansion of the
square root and Q−1(·) function in (5), we obtain the desired
result.

B. A Typical Set

We define a typical set of state types given by

P̃n =

{
PS ∈ Pn(S) : ‖PS − π‖∞ ≤

√
log n

n

}
. (8)

We will see the second-order performance is unaffected by
types falling outside P̃n, due to the fact that [8, Lemma 22]

P
[
P̂S /∈ P̃n

]
= O

( 1

n2

)
. (9)

C. Approximations of Distributions

For each PS ∈ Pn(S), we define an approximation Q(PS)
U |S,n

of QU |S as follows. For each s ∈ S with PS(s) > 0, let
Q

(PS)
U |S,n(·|s) be a type in PnPS(s)(U) whose probabilities are
1

nPS(s) -close to QU |S in terms of L∞ norm, and such that

Q
(PS)
U |S,n(u|s) = 0 wherever QU |S(u|s) = 0. If PS(s) = 0 then

Q
(PS)
U |S,n(·|s) is arbitrary (e.g. uniform). Assuming without loss

of generality that π(s) > 0 for all s ∈ S , we have from (8)
that mins nPS(s) grows linearly in n for all PS ∈ P̃n. Thus,∣∣∣QU |S(u|s)−Q(PS)

U |S,n(u|s)
∣∣∣ = O

( 1

n

)
(10)

uniformly in PS ∈ P̃n and (s, u).
We will make use of the following joint distributions:

P
(PS)
SUY (s, u, y) , PS(s)QU |S(u|s)W (y|φ(u, s), s) (11)

P
(PS)
SUY,n(s, u, y) , PS(s)Q

(PS)
U |S,n(u|s)W (y|φ(u, s), s). (12)

Using (10), we immediately obtain that∣∣∣P (PS)
SUY (s, u, y)− P (PS)

SUY,n(s, u, y)
∣∣∣ = O

( 1

n

)
(13)

uniformly in PS ∈ P̃n and (s, u, y).

D. A Taylor Expansion of the Mutual Information

Let I(PS)(U ;S) and I(PS)(U ;Y ) denote mutual informa-
tions under the joint distribution P (PS)

USY in (11), and define

I(PS) , I(PS)(U ;Y )− I(PS)(U ;S). (14)

We observe from (1) that C = I(π). The following Taylor
expansion (about PS = π) is proved in [7]:

I(PS) = Ĩ(PS) + ∆(PS), (15)

where

Ĩ(PS) ,
∑
s

PS(s)
∑
u

QU |S(u|s)

×

(∑
y

W (y|φ(u, s), s) log
P

(π)
Y |U (y|u)

P
(π)
Y (y)

− log
QU |S(u|s)
P

(π)
U (u)

)
,

(16)

and
max
PS∈P̃n

|∆(PS)| ≤ K1 log n

n
(17)

for some constant K1.

III. PROOF OF THEOREM 1
As stated above, it suffices to prove Theorem 2. Thus, we

assume that the state type PS is known at the decoder.
1) Random-Coding Parameters: The parameters are the

auxiliary alphabet U , input distribution QU |S , function φ :
U × S → X , and number of auxiliary codewords L(PS) for
each state type PS ∈ Pn(S). We assume that U , QU |S and φ
are capacity-achieving.

2) Codebook Generation: For each state type PS ∈ Pn(S)
and each message m, we randomly generate an auxiliary
codebook {U (PS)(m, l)}L(PS)

l=1 , where each codeword is drawn
independently according to the uniform distribution on the
type class Tn(P

(PS)
U,n ) (see (12)). Each auxiliary codebook is

revealed to the encoder and decoder.
3) Encoding and Decoding: Given the state sequence S ∈

Tn(PS) and message m, the encoder sends

φn(U ,S) ,
(
φ(U1, S1), · · · , φ(Un, Sn)

)
, (18)

where U is an auxiliary codeword U (PS)(m, l) with l chosen
such that (S,U) ∈ Tn(P

(PS)
SU,n), with an error declared if no

such auxiliary codeword exists. Given y and the state type PS ,
the decoder estimates m according to the pair (m̃, l̃) whose
corresponding sequence U (PS)(m̃, l̃) maximizes

i(PS)
n (u,y) ,

n∑
i=1

i(PS)(ui, yi), (19)

where

i(PS)(ui, yi) , log
P

(PS)
Y |U (y|u)

P
(PS)
Y (y)

(20)

with P
(PS)
SUY defined in (11). It should be noted that P (π)

SUY

coincides with the distribution in (2), and hence i(π)(u, y)
coincides with (4).

We consider the events

E1 ,
{

No l yields (S,U (PS)(m, l)) ∈ Tn(P
(PS)
SU,n)

}
(21)

E2 ,
{

Decoder chooses a message m̃ 6= m
}
. (22)

It follows from these definitions and (9) that the overall
random-coding error probability pe satisfies

pe ≤
∑

PS∈P̃n

P
[
P̂S = PS

](
P
[
E1 | P̂S = PS

]
+ P

[
E2 | P̂S = PS , Ec1

])
+O

( 1

n2

)
. (23)



4) Analysis of E1: We study the probability of E1 con-
ditioned on S having a given type PS ∈ P̃n. Combining
(13) with a standard property of types [12, Eq. (18)], each
of the auxiliary codewords induces the joint type P (PS)

SU,n with
probability at least p0(n)−1e−nI

(PS)(U ;S), where I(PS)(U ;S)
is defined in Section II-D, and p0(n) is polynomial in n. Since
the codewords are independent, we have

P
[
E1 | P̂S = PS

]
≤
(
1− p0(n)−1e−nI

(PS)(U ;S)
)L(PS)

(24)

≤ exp
(
− p0(n)−1e−n

(
I(PS)(U ;S)−R(PS)

L

))
,

(25)

where (25) follows using 1− α ≤ e−α and defining

R
(PS)
L ,

1

n
logL(PS). (26)

Choosing

R
(PS)
L = I(PS)(U ;S) +K2

log n

n
(27)

with K2 equal to one plus the degree of the polynomial p0(n),
we obtain from (25) that

P
[
E1 |PS

]
≤ e−ψn (28)

for some ψ > 0 and sufficiently large n.
5) Analysis of E2: We study the probability of E2 con-

ditioned on S having a given type PS ∈ P̃n, and also
conditioned on Ec1 . By symmetry, all (s,u) ∈ Tn(P

(PS)
SU,n)

are equally likely, and hence the conditional distribution given
P̂S = PS and Ec1 of the state sequence S, auxiliary codeword
U , and received sequence Y is given by

(S,U ,Y ) ∼ P (PS)
SU (s,u)Wn(y|φn(u, s), s), (29)

where P (PS)
SU is uniform on the type class:

P
(PS)
SU (s,u) ,

1∣∣Tn(P
(PS)
SU,n)

∣∣11{(s,u) ∈ Tn(P
(PS)
SU,n)

}
. (30)

Let P (PS)
Y (y) ,

∑
u,s P

(PS)
US (u, s)Wn(y|φn(u, s), s) be the

corresponding output distribution. Using a standard change of
measure from constant-composition to i.i.d. (e.g. see [9, Ch.
2]), we can easily show that

P
(PS)
Y (y) ≤ p1(n)

n∏
i=1

P
(PS)
Y (yi), (31)

where p1(n) is polynomial in n.
Recall that the decoder maximizes i(PS)

n given in (19). Using
a well-known threshold-based non-asymptotic bound [2], we
have for any γ(PS) that

P
[
E2 | P̂S = PS , Ec1

]
≤ P

[
i(PS)
n (U ,Y ) ≤ γ(PS)

]
+ML(PS)P

[
i(PS)
n (U ,Y ) > γ(PS)

]
, (32)

where U ∼ P
(PS)
U independently of (S,U ,Y ). Using the

change of measure given in (31), we can apply standard
steps (e.g. see [3]) to upper bound the second term in

(32) by p2(n)ML(PS)e−γ
(PS)

, where p2(n) is polynomial
in n. We can ensure that this term is O

(
1
n

)
by choosing

γ(PS) = logML(PS) + K3 log n, where K3 is one higher
than the degree of p2(n). Under this choice, and defining
K4 , K2 +K3, we obtain from (27) and (32) that

P
[
E2 | P̂S = PS

]
≤ P

[
i(PS)
n (U ,Y ) ≤ logM

+ nI(PS)(U ;S) +K4 log n
]

+O
( 1

n

)
. (33)

6) Application of the Berry-Esseen Theorem: Combining
(28) and (33), we have for all PS ∈ P̃n that

P
[
E1 ∪ E2 | P̂S = PS

]
≤ P

[
i(PS)
n (U ,Y ) ≤ logM

+ nI(PS)(U ;S) +K4 log n
]

+O
( 1

n

)
. (34)

In order to apply the Berry-Esseen theorem to the right-hand
side of (34), we first compute the mean and variance of
i
(PS)
n (U ,Y ), defined according to (19) and (29). The required

third moment can easily be uniformly bounded in terms of the
alphabet sizes [13, Appendix D]. We will use the fact that, by
the symmetry of the constant-composition distribution in (30),
the statistics of i(PS)

n (U ,Y ) are unchanged upon conditioning
on (S,U) = (s,u) for some (s,u) ∈ Tn(P

(PS)
SU,n). Using the

joint distribution P (PS)
SUY,n defined in (12), it follows that

E
[
i(PS)
n (U ,Y )

]
= n

∑
u,y

P
(PS)
UY,n(u, y)i(PS)(u, y) (35)

= nI(PS)(U ;Y ) +O(1), (36)

where (35) follows by expanding the expectation as a sum
from 1 to n, and (36) follows from (13) and the definitions of
i(PS)(u, y) and I(PS)(U ;Y ). A similar argument yields

Var
[
i(PS)
n (U ,Y )

]
= nE

[
Var
[
i(PS)(U, Y ) |U, S

]]
+O(1)

(37)

, nV (PS) +O(1). (38)

It should be noted that V (PS) is bounded away for zero
for PS ∈ P̃n and sufficiently large n, since V (π) > 0 by
assumption in Theorem 1. Furthermore, the O(1) terms in
(36) and (38) are uniform in PS ∈ P̃n.

Using the definition of I(PS) in (14), we choose

logM = nI(π)−K4 log n− βn, (39)

where βn will be specified later, and will behave as O(
√
n).

Combining (34), (36), (38) and (39), we have

P
[
E1 ∪ E2 | P̂S = PS

]
≤ P

[
i(PS)
n (U ,Y ) ≤ nI(π) + nI(PS)(U ;S)− βn

]
+O

( 1

n

)
.

(40)

≤ Q

(
βn + nI(PS)− nI(π) +K5√

nV (PS) +K6

)
+O

(
1√
n

)
(41)

where (41) follows by conditioning on (S,U) = (s,u) for
some (s,u) ∈ Tn(P

(PS)
SU,n) (recall that this does not change the



statistics of i(PS)
n (U ,Y )), applying the Berry-Esseen theorem

for independent and non-identically distributed variables [14,
Sec. XVI.5], and introducing the constants K5 and K6 to
represent the uniform O(1) terms in (36) and (38).

7) Averaging Over the State Type: Substituting (41) into
(23), we have

pe ≤
∑

PS∈P̃n

P
[
P̂S = PS

]
Q

(
β + nI(PS)− nI(π)√

nV (PS)

)

+O

(
1√
n

)
, (42)

where we have factored the constants K5 and K6 into the
remainder term using standard Taylor expansions along with
the assumption βn = O(

√
n); see [7] for details. Analogously

to [8, Lemmas 17-18], we simplify (42) using two lemmas.

Lemma 1. For any βn = O(
√
n), we have∑

PS∈P̃n

P
[
P̂S = PS

]
Q

(
βn + nI(PS)− nI(π)√

nV (PS)

)

≤
∑

PS∈P̃n

P
[
P̂S = PS

]
Q

(
βn + nI(PS)− nI(π)√

nV (π)

)
+O

( log n√
n

)
(43)

Proof: This follows using standard Taylor expansions
along with the definition of P̃n in (8) and the fact that V (PS)
is continuously differentiable at PS = π; see [7].

Lemma 2. For any βn, we have∑
PS∈P̃n

P
[
P̂S = PS

]
Q

(
βn + nI(PS)− nI(π)√

nV (π)

)

≤ Q

(
βn√
nV

)
+O

(
log n√
n

)
, (44)

where V is defined in (6).

Proof: Using the expansion of I(PS) in terms of Ĩ(PS)
and ∆(PS) given in (15), along with the property given in
(17), we can easily show that the left-hand side of (44) is
upper bounded by∑
PS∈P̃n

P
[
P̂S = PS

]
Q

(
βn − nI(π) + nĨ(PS)√

nV (π)

)
+O

( log n√
n

)
.

(45)

Since Ĩ(PS) is written in the form
∑
s PS(s)ψ(s), a trivial

generalization of [8, Lemma 18] gives

∑
PS

P
[
P̂S = PS

]
Q

(
βn + nĨ(PS)− nĨ(π)√

nV (π)

)

= Q

(
βn√

n
(
V (π) + V ∗(π)

)
)

+O

(
1√
n

)
, (46)

where V ∗(π) , Varπ[ψ(S)]. Using (16), we see that ψ(S) =
E[i(π)(U, Y )−i(π)(U, S) |S], and it follows that V (π)+V ∗(π)
is equal to V , defined in (6). The proof is concluded by
expanding the summation in (45) to be over all types, and
substituting (46).

Using (42) along with Lemmas 1 and 2, we have

pe ≤ Q

(
βn√
nV

)
+O

( log n√
n

)
. (47)

Setting pe = ε and solving for βn, we obtain

βn =
√
nV Q−1(ε) +O(log n). (48)

Consistent with (42) and Lemma 1, we have βn = O(
√
n).

Substituting (48) into (39) yields the desired result with V of
the form given in (6).

By analyzing the Karush-Kuhn-Tucker (KKT) correspond-
ing to the maximization in (1), it can be shown that the equality
in (7) holds under any QU |S which maximizes the objective
for a given pair (U , φ) [7]. Since the parameters are capacity-
achieving by assumption, this completes the proof.

ACKNOWLEDGMENT

I would like to thank Vincent Tan for many helpful com-
ments and suggestions.

REFERENCES

[1] V. Strassen, “Asymptotische Abschätzungen in Shannon’s Informations-
theorie,” in Trans. 3rd Prague Conf. on Inf. Theory, 1962, pp. 689–723,
English Translation: http://www.math.wustl.edu/~luthy/strassen.pdf.

[2] Y. Polyanskiy, V. Poor, and S. Verdú, “Channel coding rate in the finite
blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307–
2359, May 2010.

[3] M. Hayashi, “Information spectrum approach to second-order coding
rate in channel coding,” IEEE Trans. Inf. Theory, vol. 55, no. 11, pp.
4947–4966, Nov. 2009.

[4] S. I. Gelfand and M. S. Pinsker, “Coding for channel with random
parameters,” Prob. Inf. Transm., vol. 9, no. 1, pp. 19–31, 1980.

[5] S. Watanabe, S. Kuzuoka, and V. Y. F. Tan, “Non-asymptotic and second-
order achievability bounds for coding with side-information,” 2013,
http://arxiv.org/abs/1301.6467.

[6] M. H. Yassaee, M. R. Aref, and A. Gohari, “A technique for de-
riving one-shot achievability results in network information theory,”
http://arxiv.org/abs/1303.0696.

[7] J. Scarlett, “On the dispersions of the Gel’fand-Pinsker channel and
dirty paper coding,” 2013, submitted to IEEE Trans. Inf. Theory [arxiv:
http://arxiv.org/abs/1309.6200].

[8] M. Tomamichel and V. Y. F. Tan, “ε-capacities and second-
order coding rates for channels with general state,” [Online:
http://arxiv.org/abs/1305.6789].

[9] I. Csiszár and J. Körner, Information Theory: Coding Theorems for
Discrete Memoryless Systems, 2nd ed. Cambridge University Press,
2011.

[10] A. Somekh-Baruch and N. Merhav, “On the random coding error
exponents of the single-user and the multiple-access Gel’fand-Pinsker
channels,” in IEEE Int. Symp. Inf. Theory, Chicago, IL, June 2004.

[11] R. Gallager, Information Theory and Reliable Communication. John
Wiley & Sons, 1968.

[12] ——, “Fixed composition arguments and lower bounds to error proba-
bility,” http://web.mit.edu/gallager/www/notes/notes5.pdf.

[13] V. Y. F. Tan and O. Kosut, “On the dispersions of three network
information theory problems,” 2012, arXiv:1201.3901v2 [cs.IT].

[14] W. Feller, An introduction to probability theory and its applications,
2nd ed. John Wiley & Sons, 1971, vol. 2.


