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Abstract—The waveform optimization problem for opportunis-
tic communications is addressed, based on sensing the second-
order statistics of the existing transmissions. We propose a
minimum-norm waveform optimization that exhibits robustness
to the worst-case subspace mismatch, minimizes the spectral over-
lapping with the existing transmissions, is rotationally invariant,
and has maximally white spectrum. The derived solution can
be seen as a different kind of signal dimension-based spreading.
In addition, the effects of the residual interference caused to
the existing transmissions are studied. Numerical results are
provided to assess the performance of the proposed solution in the
frequency domain for the asymptotic case. The level of induced
interference is compared to traditional null space techniques.

Index Terms—Opportunistic communication, waveform opti-
mization, dimension spreading, distributed networks.

I. INTRODUCTION

The increasing demand for high data-rate services intensifies
the interest of spectral efficiency. Since the spectrum is a lim-
ited resource, techniques such as cognitive radio and dynamic
spectrum access provide efficient ways to exploit the spectrum.
In this sense, new users opportunistically communicate using
the non-used resources of a wireless network causing little or
non-existent interference.

The majority of the physical layer proposals are based
on centralized multi-carrier modulations, which use spectrum
sensing [1] to detect the available spectral holes over the sensed
bandwidth. This information is used to tune the parameters of
the multi-carrier modulation. Concerning these modulations,
the proposals are focused mainly on orthogonal frequency-
division multiplexing (OFDM) [2], [3] and multi-carrier code-
division multiple access (MC-CDMA) [4]. In addition to multi-
carrier schemes, waveform adaptation [5] permits the new users
(also known as secondary users in the literature) to dynamically
adapt their transmission waveform taking into consideration the
results of spectrum sensing.

Resource allocation in multi-carrier modulations requires a
centralized network topology, i.e., an inefficient implementa-
tion due to backbone communications. In this sense, waveform
optimization is a key enabling issue to increase the system
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efficiency while guaranteeing the demanded bit rates. Further-
more, since the power consumption is a limitation in wireless
systems, energy efficiency plays an important role in future
communication networks. Concerning the latter issue, some
recent works, for instance [6], [7], propose an energy-efficient
power allocation with imperfect spectrum sensing.

In fact, some works, e.g. [8], [9], introduce the idea of
exploiting the instantaneous interfering channels to transmit
over the noise subspace, keeping the existing users (also known
as primary users in the literature) free of interference. However,
the use of instantaneous channel state information (CSI) is a
drawback for practical implementation in real systems.

Traditional null space techniques propose transmitting over
the noise subspace taking advantage of the second-order statis-
tics of the aforementioned channel. Even though these tech-
niques overcome the implementation issues by using the noise
eigenvectors [10], [11], there is still a persisting ambiguity
among the adopted noise eigenvectors due to the lack of
rotational invariance, leading to non-coherent detection.

In this paper, we have considered an opportunistic communi-
cations scenario where the transmission waveform is optimized
by means of the locally sampled observations correlation
matrix, hence avoiding the use of an inefficient backbone. As
it will be shown, the optimal waveform presents maximum
spectral mismatch with the existing users and maximally white
frequency response, which minimizes the possible interference
to those users. Interestingly, the presented proposal exhibits
rotational invariance, avoiding the noise eigenvectors ambigu-
ity. As it will be explained, the derived solution may be seen
as a dimension-spreading technique. Finally, an asymptotically
efficient implementation of this strategy is presented.

II. PROBLEM STATEMENT

This section is intended to describe the waveform optimiza-
tion problem in the context of opportunistic communications.
Let W be the sensed bandwidth. We assume that some of the
radio resources are occupied by the existing users, namely
the external users. In opportunistic communications, a new
set of internal users of an internal wireless network want to
communicate over the available radio resources, minimizing
any interference on the existing external users.



In this sense, and for the sake of simplicity, we assume
that two new internal users wish to establish a point-to-point
transmission based on a generic modulation signal of the form

s(t) =
∑
n

K∑
k=1

ak[n]ϕk(t− nT ), (1)

being ak[n] any symbol from a constellation of size P , ϕk(t)
are the transmission waveforms to be optimized, T is the
symbol period, and k stands for the indexing of orthogonal
waveform set

W = {ϕ1(t), . . . , ϕK(t)}. (2)

The cardinality of this set is the number of available degrees-
of-freedom (DoF) for internal users. It is worth noting that a
user can use a single DoF K = 1, or more than one K > 1,
according to the traffic conditions. The DoF concept is adopted
as it is coined by R. Gallager [12], and by D. Tse and P.
Viswanath [13], i.e., the size of the set of complex numbers
required to specify any particular class of signals.

That is, for band-limited, time-limited, and energy-limited
signals ϕk(t) in (1) the maximum DoF will be given by
N = WT complex dimensions. In this paper, we assume
that the existing external users employ an amount of radio
resources equivalent to M < N in the wireless network.
Hence, K = N − M is the number of DoF available for
opportunistic transmission between two internal users. Then,
as it is previously said, the cardinality of (2) is |W| = K.

Let Φk(ω) denote the Fourier transform of ϕk(t), and let
φs(ω) be the aggregated average power spectral density (PSD)
of the external users, which is observed by any generic internal
user. Ideally, the PSD of the internal users and the PSD of the
external users should exhibit maximum spectral mismatch, or
equivalently minimum overlap over the monitored bandwidth,
which can be mathematically expressed as

ϕk(t) = arg min
ϕ(t): F [ϕ(t)]=Φ(ω)

1

2π

∫ π

−π
φs(ω) |Φ(ω)|2 dω, (3)

where ω represents the normalized frequency, and F [x(t)]
denotes the Fourier transform of x(t). Let ϕk ∈ CN be the
vector representation of ϕk(t), and let Rs ∈ CN×N be the
autocorrelation matrix of the external users’ signal. Notice that
in the time-domain, (3) becomes

ϕk = arg min
ϕ

tr
(
Rsϕϕ

H
)
, (4)

being tr (X) the trace of a square matrix X. It is worth noting
that the optimization problem in (3) and (4) will be subjected
to non-trivial design constraints.

Actually, the estimation of Rs performed by the internal
users will suffer from estimation errors due to the effects of
multipath fading, shadowing and noisy measures. Let xt be the
local observations at the internal transmitting node, and let x
be the local observations at another arbitrary internal node. We
then model the sensed autocorrelation matrix of the external
users’ signal at any internal node as

Rs(x) = Rs(xt) + ∆(x; xt), (5)

where Rs(xt) is the autocorrelation matrix sensed at the
internal transmitting node, and ∆(x; xt) is a positive semi-
definite matrix which reflects the DoF uncertainty with respect
to the transmitter at any other location x. We note that
∆(xt; xt) = 0. The model adopted in (5) refers to a space-
variant estimation error, since the error matrix ∆(x; xt) varies
depending on the location of the receiving node. Henceforth,
to simplify the notation, we will denote Rs(xt) = Rs and
∆(x; xt) = ∆. On that account, by using (5), we may con-
sider the worst-case cross-interference in the design problem
formulated in (4), i.e.,

ϕk = arg min
ϕ

max
∆

ϕH (Rs + ∆)ϕ s.t. ‖∆‖2F ≤ ε2, (6)

where ‖X‖2F = tr(XXH) denotes the squared Frobenius norm
of matrix X, and the uncertainty on matrix ∆ is upper-bounded
by a certain value ‖∆‖2F ≤ ε2. The Lagrangian associated to
the maximization problem in (6) is given by

L (∆, µ) = ϕH (Rs + ∆)ϕ− µ
(
ε2 − tr

(
∆∆H

))
. (7)

Taking the gradient of (7) with respect to ∆ we obtain

∆ =
ε

‖ϕ‖2
ϕϕH . (8)

Regarding to (8), in an orthogonal opportunistic scenario (i.e.
when RH

s ϕ = 0) the interference may be reduced by means of
minimizing the norm of the transmission waveform. Further on,
we will refer to this approach as the minimum-norm waveform
(MNW). It is worth noting that the scenario presented in (8)
is very pessimistic, since it indicates that the internal users
have estimated as available the DoF occupied by the external
network. Notice that it is related to a very large uncertainty
and/or to monitoring techniques with a poor performance.

In essence, (8) indicates that minimizing the norm of the
transmission waveform is the best that can be done to achieve
the highest performance. Hence, the minimum-norm solution
robustly exploits the available DoF in the worst-case scenario.
This is a possible interpretation of the reason why robust spec-
tral estimation techniques often adopt minimum-norm criteria,
e.g. the seminal paper [14] and the robustness studies of the
solution as particular cases of total least squares [15], in many
different contexts.

At this point, we reformulate (4) taking into consideration
the previous discussion about (8). Consequently, the waveform
optimization problem addressed in this paper is given by

ϕk = arg min
ϕ

‖ϕ‖2 s.t. RH
s ϕ = 0 and ϕHk ek = 1, (9)

where

ek = [0 . . . 0︸ ︷︷ ︸
N−k

1 0 . . . 0︸ ︷︷ ︸
k−1

]T . (10)

The non-trivial constraint in (9) will be further optimized. It
can be proved that, as stated in [15], the optimization in (9) is
equivalent to a total least squares optimization.
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Fig. 1. Point-to-point opportunistic communication problem between two
internal users exploiting the second-order statistics of the external network.

III. MINIMUM-NORM WAVEFORM OPTIMIZATION

The considered opportunistic scenario is depicted in Fig. 1
for a point-to-point opportunistic communications link. Based
on local spectrum sensing [1] and model order selection [16],
the transmitting and receiving users independently estimate the
autocorrelation matrix of the external network users’ aggregate
signal that are denoted as follows

Rs(xt) with Mt = rank(Rs(xt)), (11)

Rs(xr) with Mr = rank(Rs(xr)). (12)

Recalling the definition of the number of available DoF, we see
that Kt = N −Mt and Kr = N −Mr represent the available
DoF estimated by the transmitter and the receiver, respectively.
Ideally, Mt = Mr = M , with

Rs(xt) ≈ Rs(xr) ≈ Rs. (13)

However, shadowing and multipath fading may cause that the
autocorrelation matrices in (11) and (12) differ in rank, leading
to two possible situations

Kt < Kr, (14)
Kt > Kr. (15)

When the transmitter underestimates the available DoF, i.e.
(14), the receiver will observe a noise enhancement as it is
detecting on a signal space with more DoF than the ones
used by the transmitter. Otherwise, when the available DoF
are overestimated, i.e. (15), the receiver will suffer from a
bit-energy loss, because the transmitter uses more DoF than
the ones that are expected at the receiver. In addition, in the
latter case, an interference to external-network receivers may
be observed. This interference is caused because certain DoF
occupied by the external network can be also used as in (5).
Hence, this scenario will be modeled as

Rs(xr) = Rs(xt) + ∆, (16)

where ∆ is independent of the external network.
In the presence of white spaces, the aggregate signal of the L

external users is contained in a signal subspace, which is exhib-
ited in the autocorrelation matrix of the locally noisy sampled
observations. We now assume that both the transmitting and
receiving internal users estimate this autocorrelation matrix R̂,
which admits the following decomposition

R̂ = Rs + Rn (17a)

= Us

(
Λs + σ2IM

)
UH
s + σ2UnIKUH

n , (17b)
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Fig. 2. PSD of two MNW according to (19). The whitest one also fulfills
(20), while the least white waveform corresponds to the last iteration of the
orthogonal set in (2).

where Rs and Rn are the signal and noise autocorrelation
matrices, respectively. Concerning the decomposition in (17b),
Us and Un are the eigenvectors that span the signal and noise
subspaces, respectively. Λs is a diagonal matrix containing
the M signal eigenvalues, and σ2 is the noise variance. Here,
IM and IK denote the identity matrices of size M and K,
respectively.

At this point and based on (17b), it can be shown that the
solution to the optimization problem (9)–(10) is equivalent to
find the waveform ϕk = Unλk such that

λk = arg min
λk

‖ϕk‖2 s.t. ϕHk ek = 1, (18)

leading to

ϕk =
1(

eHk UnUH
n ek

)UnUH
n ek. (19)

The selection of the index k in (19) is highly critical, as detailed
in (22), and can be further optimized following

k = arg max
l∈{1,....K}

eHl UnUH
n el. (20)

As we can observe in (19), the optimal waveform is a certain
scaled column of the noise subspace projector P = UnUH

n . It
is worth noting that the projector P is maximizing the distance
between the transmitted waveforms by performing a dimension
spreading. As mentioned in Sec. II, we can construct a set of
K orthogonal waveforms. This set can be recursively obtained
by removing the already used DoF at each iteration from the
orthogonal subspace, i.e.

P1 = UnUH
n (21a)

P⊥k = IN −Pk, (21b)

P⊥k+1 = [P⊥k ϕk], (21c)

where k indexes the iterations from 1 to |W| = K.



A. Properties of the Minimum-Norm Solution

Motivated by the former problem description, the waveform
design addressed in this paper is given by the optimization
problem (9)–(10) leading to (19)–(20). As it may be seen be-
low, the properties exhibited by the solution (19) are analyzed.

1) Invariance to rotations: One of the main problems in
orthogonal opportunistic transmission is that despite transmitter
and receiver can share the same DoF, there exists ambigu-
ity between the adopted transmission and reception vectorial
basis. Yet, we show that the minimum-norm solution (19)
relies on the noise subspace projector, which is invariant to
right rotations, i.e. those within the noise subspace. We note
that a rotational invariant detection enjoys a better detection
performance than the one exhibited by non-coherent com-
munication receivers. Let Ξ be a rotation matrix satisfying
ΞΞH = IK . Thus, the right-rotated version of Un, UnΞ,
satisfies UnΞΞHUH

n = P.
2) Spectral whiteness and uniform power distribution

among all available DoF: It is possible to rewrite the opti-
mization cost function in (9) as

ϕk = arg min
ϕ

‖ϕ‖2

|ϕHek|2
s.t. UH

s ϕ = 0. (22)

The objective function in (22) can be further expressed in the
asymptotic frequency domain as

‖ϕ‖2

|ϕHek|2
=

1
2π

∫ π
−π |Φ(ω)|2 dω∣∣∣ 1

2π

∫ π
−π Φ(ω)e−j2πω(k−1)dω

∣∣∣2 ≥ 1, (23)

where the last is due to the Cauchy-Schwarz inequality. We
see that the ratio in (23) is minimized if and only if the PSD
of the optimal waveforms is constant, i.e., implying that the
transmitted spectrum is white. The non-trivial constraint in (9)
implies the linear prediction condition stated in [14] and, thus,
its polynomial roots will present an almost uniform distribution
[17]. It is worth noting that the criterion in (22) and then in (23)
are equivalent and both provide the whitest spectral solution.
This property is also giving the fairest solution, because the
internal users will inject the same amount of power in all
available DoF. Hence, in case of bad conditions in monitoring
the external network, the involved DoF will not receive a large
amount of power, but the same as the remaining.

3) Energy efficiency: Since the minimum-norm solution
presents a maximally white PSD, its shape in the time domain
will be glaringly peaky. In terms of peak-to-average ratio
(PAR), the proposed solution may be critical to be used in
certain applications. In this sense, we propose the use of peak
clipping, but subjected to orthogonality constraints in order
to reduce the PAR while guaranteeing little or non-existent
interference to the external network. Despite the importance of
this issue, the whole study must be omitted in this presentation
due to space reasons.

IV. ANALYSIS OF THE INTERFERENCE

In the previous section, the optimal minimum-norm wave-
form has been derived under the assumption that the second-
order statistics are known perfectly. However, a more realistic

scenario must consider the multipath fading and shadowing
effects at the sensing transmitting node. As we have previously
seen, the worst-case scenario is the one corresponding to a
rank-one error matrix ∆ as in (8). Indeed, this is a very
pessimistic scenario. A more general rank−D model of the
sensing error matrix is considered, i.e.,

∆ =

D∑
d=1

δdδ
H
d , (24)

where D is the rank of the error matrix and δd ∈ CN , for d =
1, . . . , D, are i.i.d. random vectors. In order to increase the
reliability of the error model, the worst statistics in terms of
information degradation are assumed. As it is well-known, a
Gaussian interference will cause the maximum information
degradation if the input noiseless signal also follows a Gaus-
sian distribution, subject to a transmission power constraint.
Therefore, we assume that

δd ∼ CN
(
0;σ2

δIN
)
, for d = 1, . . . , D. (25)

From (25), we can easily observe that

E [∆] = Dσ2
δIN , (26)

and
E
[
‖∆‖2F

]
= DN(N +D)σ4

δ , ε2, (27)

where ε reflects the level of uncertainty. Let ξε(D) denote
the interference power level provided by the orthogonal op-
portunistic transmission to the external network as a function
of the rank of error matrix D and the uncertainty ε. Then, it
follows from (26)–(27) that

ξε(D) = E
[
ϕH∆ϕ

]
(28a)

= σ2
δD‖ϕ‖2 (28b)

= ε

√
D

N(N +D)
. (28c)

The undesired induced interference power depends on the rank
of the error matrix D, the total number of DoF N , and it is
proportional to the uncertainty level ε, as it is depicted in Fig. 3.

V. ASYMPTOTIC BEHAVIOR

Throughout the paper and for the sake of simplicity, the
problem analysis and the discussion of the solution are done
in terms of eigenvectors. According to Szegö’s limit theorems,
a Toeplitz matrix as (17a) is asymptotically equivalent to a
circulant matrix [18]. Hence, the eigenfactorization of (17a)
asymptotically leads to a Fourier matrix-based decomposition

R̂ −→
N→∞

FΛFH , (29)

being F the normalized Fourier matrix, and Λ the nondecreas-
ing eigenvalues matrix. According to (29), we can find the set
of available DoF, which corresponds to the set of frequency
bins with null spectral contribution. Hence,

P =
∑
n∈N

fnfHn , (30)
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Fig. 4. Power Spectral Density of the asymptotic waveform and the external-
network spectral occupation with a generic scaling.

denoting N the set of the available frequency bins, i.e. the
noise subspace, and

fn =
1√
N

[
1 ωn · · · ωN−1

n

]T
, (31)

being ωn the primitive n-th root of the unity. Following
the methodology described in (19)–(20), the minimum-norm
solution asymptotically behaves as a linear combination of
the non-occupied frequency bins (see Fig. 4). This implies a
direct link of the results presented in this paper with high-
efficient DFT-based multi-carrier solutions. Furthermore, when
the impact of the channel is considered, induced circulant
channel matrices can be obtained by the use of a conventional
cyclic prefix, i.e.,

ϕ(n) ~ h(n)→
F

FH (h� Fϕ) = FHHFϕ, (32)

where H is a diagonal matrix whose diagonal h contains the
spectral contribution of the channel, and ~ and � denote
the circular convolution and the Schur-Hadamard product,
respectively. This property is of paramount importance, since
known techniques in multiplicative channel transmission can
be used to mitigate the effects of the interference and exploit

any potential diversity gain provided by the channel memory.
It is worth noting that, in the asymptotic case, the use of the
eigendecomposition is avoided, which implies an improvement
in terms of computational efficiency.

VI. CONCLUSIONS

This paper has addressed the minimum-norm waveform
optimization problem based on the second-order statistics of
the external network. The presented technique is a dimension-
spreading solution, and therefore presents a processing gain and
robustness against interference. The derived waveforms exhibit
the properties of white spectrum, rotationally invariance, and
robustness to the worst-case subspace mismatch, which are
both numerically and theoretically discussed together with the
interference. Finally, its asymptotic performance is reported.
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