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Abstract—This paper studies the second-order asymptotics of
the Gaussian multiple-access channel with degraded message sets.
For a fixed average error probability ε ∈ (0, 1) and an arbitrary
point on the boundary of the capacity region, we characterize
the speed of convergence of rate pairs that converge to that point
for codes that have asymptotic error probability no larger than
ε. We do so by elucidating the relationship between global and
local notions of second-order asymptotics.

I. INTRODUCTION

In this paper, we revisit the Gaussian multiple-access chan-
nel (MAC) with degraded message sets (DMS). This is a
communication model in which two independent messages are
to be sent from two sources to a common destination. One
encoder, the cognitive or informed encoder (user 1, say), has
access to both messages, while the uninformed encoder (user
2) only has access to its own message. The channel is assumed
to be memoryless, and each use is described by

Y = X1 +X2 + Z, (1)

where Z ∼ N (0, 1). Thus, the channel transition law is

W (y|x1, x2) =
1√
2π

exp

(
−1

2
(y − x1 − x2)2

)
. (2)

Let (m1,m2) be the message pair, and let x1 = x1(m1,m2)
and x2 = x2(m2) be the corresponding codewords. We
assume the maximal power constraints

‖x1‖22 ≤ nS1, and ‖x2‖22 ≤ nS2, (3)

where S1 and S2 are arbitrary positive numbers.
The capacity region, i.e. the set of all pairs of achievable

rates, is well-known (e.g. see [1, Ex. 5.18(b)]), and is given
by the set of rate pairs (R1, R2) satisfying

R1 ≤ C
(
(1− ρ2)S1

)
(4)

R1 +R2 ≤ C
(
S1 + S2 + 2ρ

√
S1S2

)
(5)

for some ρ ∈ [0, 1], where C(x) := 1
2 log(1+x) is the Gaussian

capacity function. The capacity region for S1 = S2 = 1 is
illustrated in Fig. 1. The boundary is parametrized by ρ.

While the capacity region is well-known, there is substantial
motivation to understand the second-order asymptotics for this
problem. For any given point (R∗1, R

∗
2) on the boundary of

the capacity region, we study the rate of convergence to that
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Fig. 1. Capacity region (CR) in nats/use of a Gaussian MAC with DMS
where S1 = S2 = 1, i.e. 0 dB. Observe that ρ ∈ [0, 1] parametrizes points
on the boundary. Every point on the curved part of the boundary is achieved
by a unique input distribution N (0,Σ(ρ)).

point for an ε-reliable code. More precisely, we characterize
the set of all (L1, L2) pairs that are achievable according to
the following definition, similar to that of Nomura-Han [2].

Definition 1 (Second-Order Coding Rates). A pair (L1, L2)
is (ε,R∗1, R

∗
2)-achievable if there exists a sequence of codes

with length n, number of codewords for user j = 1, 2 equal
to Mj,n, and average error probability εn, such that

lim inf
n→∞

1√
n

(logMj,n − nR∗j ) ≥ Lj , j = 1, 2, (6)

lim sup
n→∞

εn ≤ ε. (7)

The (ε,R∗1, R
∗
2)-optimal second-order coding rate region

L(ε;R∗1, R
∗
2) ⊂ R2 is defined to be the closure of the set

of all (ε,R∗1, R
∗
2)-achievable rate pairs (L1, L2).

Definition 1 gives a local notation of second-order achiev-
ability. This is in contrast with the global asymptotics studied
for various network information theory problems in [3]–[6],
which we also study here as an initial step towards obtaining
the local result. Similarly to Haim et al. [7], we believe that the
study of local second-order asymptotics provides significantly
greater insight into the system performance. To the best of
our knowledge, our main result (Theorem 2) provides the first



complete characterization of the second-order asymptotics of a
multi-user information theory problem in which the boundary
of the rate region is curved.

A. Notation

The i-th entry of a vector (e.g. y) is denoted using a
subscript (e.g. yi). Given integers l ≤ m, we use the discrete
interval notations [l : m] := {l, . . . ,m} and [m] := [1 : m].
For two vectors of the same length a,b ∈ Rd, the notation
a ≤ b means that aj ≤ bj for all j ∈ [d]. The notation
N (u;µ,Λ) denotes the multivariate Gaussian probability den-
sity function (pdf) with mean µ and covariance Λ. We use the
standard asymptotic notations O(·), o(·), Θ(·), Ω(·) and ω(·).

II. MAIN RESULTS

A. Preliminary Definitions

For a pair of rates (R1, R2), we define the rate vector

R :=

[
R1

R1 +R2

]
. (8)

The input distribution to achieve a point on the boundary
characterized by some ρ ∈ [0, 1] is a 2-dimensional Gaussian
distribution with zero mean and covariance matrix

Σ(ρ) :=

[
S1 ρ

√
S1S2

ρ
√
S1S2 S2

]
. (9)

The corresponding mutual information vector is given by

I(ρ) =

[
I1(ρ)
I12(ρ)

]
:=

[
C
(
S1(1− ρ2)

)
C
(
S1 + S2 + 2ρ

√
S1S2

)] . (10)

Let V(x, y) := x(y+2)
2(x+1)(y+1) be the Gaussian cross-dispersion

function and let V(x) := V(x, x) be the Gaussian dispersion
function [8], [9]. For fixed 0 ≤ ρ ≤ 1, define the information-
dispersion matrix

V(ρ) :=

[
V1(ρ) V1,12(ρ)
V1,12(ρ) V12(ρ)

]
, (11)

where the elements of the matrix are

V1(ρ) := V
(
S1(1− ρ2)

)
, (12)

V1,12(ρ) := V
(
S1(1− ρ2), S1 + S2 + 2ρ

√
S1S2

)
, (13)

V12(ρ) := V
(
S1 + S2 + 2ρ

√
S1S2

)
. (14)

Let (X1, X2) ∼ PX1,X2
= N (0; Σ(ρ)), and define QY |X2

and QY to be Gaussian distributions induced by PX1,X2 and
the channel W , namely

QY |X2
(y|x2) := N

(
y;x2(1 + ρ

√
S1/S2), 1 + S1(1− ρ2)

)
,

(15)

QY (y) := N
(
y; 0, 1 + S1 + S2 + 2ρ

√
S1S2

)
. (16)

It should be noted that the random variables (X1, X2) and the
densities QY |X2

and QY all depend on ρ; this dependence is
suppressed throughout the paper. The mutual information vec-
tor I(ρ) and information-dispersion matrix V(ρ) are the mean

vector and conditional covariance matrix of the information
density vector

j(X1, X2, Y ) :=

[
j1(X1, X2, Y )
j12(X1, X2, Y )

]
=

[
log

W (Y |X1, X2)

QY |X2
(Y |X2)

log
W (Y |X1, X2)

QY (Y )

]T
. (17)

That is, we can write I(ρ) and V(ρ) as

I(ρ) = E
[
j(X1, X2, Y )

]
, (18)

V(ρ) = E
[
Cov

(
j(X1, X2, Y )

∣∣X1, X2

)]
(19)

with (X1, X2, Y ) ∼ PX1X2
×W . For a given point (z1, z2) ∈

R2 and a (non-zero) positive semi-definite matrix V, define

Ψ(z1, z2; V) :=

∫ z2

−∞

∫ z1

−∞
N (u; 0,V) du, (20)

and for a given ε ∈ (0, 1), define the set

Ψ−1(V, ε) :=
{

(z1, z2) ∈ R2 : Ψ(−z1,−z2; V) ≥ 1− ε
}
.

(21)

B. Global Second-order Asymptotics
Here we provide inner and outer bounds on C(n, ε), defined

to be the set of (R1, R2) pairs such that there exist codebooks
of length n and rates at least R1 and R2 yielding an average
error probability not exceeding ε. Let g(ρ, ε, n) and g(ρ, ε, n)
be arbitrary functions of ρ, ε and n for now, and define

Rin(n, ε; ρ) :=

{
(R1, R2) ∈ R2 :

R ∈ I(ρ) +
Ψ−1(V(ρ), ε)√

n
+ g(ρ, ε, n)1

}
, (22)

Rout(n, ε; ρ) :=

{
(R1, R2) ∈ R2 :

R ∈ I(ρ) +
Ψ−1(V(ρ), ε)√

n
+ g(ρ, ε, n)1

}
. (23)

Theorem 1 (Global Bounds on the (n, ε)-Capacity Region).
There exist functions g(ρ, ε, n) and g(ρ, ε, n) such that⋃

0≤ρ≤1

Rin(n, ε; ρ) ⊂ C(n, ε) ⊂
⋃

−1≤ρ≤1

Rout(n, ε; ρ), (24)

and such that g and g satisfy the following properties:
1) For any ε ∈ (0, 1) and ρ ∈ (−1, 1), we have

g(ρ, ε, n) = O

(
log n

n

)
, g(ρ, ε, n) = O

(
log n

n

)
.

(25)
2) For any ε ∈ (0, 1) and any sequence {ρn} with ρn →
±1, we have

g(ρn, ε, n) = o

(
1√
n

)
, g(ρn, ε, n) = o

(
1√
n

)
. (26)

Proof: See Section III.
We remark that even though the union for the outer bound

is taken over ρ ∈ [−1, 1], only the values ρ ∈ [0, 1] will play a
role in establishing the local asymptotics, since negative values
of ρ are not even first-order optimal, i.e. they fail to achieve
a point on the boundary of the capacity region.



C. Local Second-order Asymptotics

Recall the definition of L(ε;R∗1, R
∗
2) given in Definition 1.

We further define

D(ρ) =

[
D1(ρ)
D12(ρ)

]
:=

∂

∂ρ

[
I1(ρ)
I12(ρ)

]
, (27)

where the individual derivatives are given by

∂I1(ρ)

∂ρ
=

−S1ρ

1 + S1(1− ρ2)
, (28)

∂I12(ρ)

∂ρ
=

√
S1S2

1 + S1 + S2 + 2ρ
√
S1S2

. (29)

Furthermore, for a vector v = (v1, v2) ∈ R2, we define

v− := {(w1, w2) ∈ R2 : w1 ≤ v1, w2 ≤ v2}. (30)

Theorem 2 (Optimal Second-Order Coding Rate Region).
Depending on (R∗1, R

∗
2), we have the following three cases:

(i) If R∗1 = I1(0) and R∗1 +R∗2 ≤ I12(0) (vertical segment
of the boundary corresponding to ρ = 0), then

L(ε;R∗1, R
∗
2) =

{
(L1, L2) ∈ R2 : L1 ≤

√
V1(0)Φ−1(ε)

}
.

(31)

(ii) If R∗1 = I1(ρ) and R∗1 + R∗2 = I12(ρ) (curved segment
of the boundary corresponding to 0 < ρ < 1), then

L(ε;R∗1, R
∗
2) =

{
(L1, L2) ∈ R2 :[

L1

L1 + L2

]
∈
⋃
β∈R

{
βD(ρ) + Ψ−1(V(ρ), ε)

}}
. (32)

(iii) If R∗1 = 0 and R∗1 +R∗2 = I12(1) (point on the vertical
axis corresponding to ρ = 1), then

L(ε;R∗1, R
∗
2) =

{
(L1, L2) ∈ R2 :[

L1

L1 + L2

]
∈
⋃
β≤0

{
βD(1)+

[
0√

V12(1)Φ−1(ε)

]−}}
.

(33)

Proof: See Section IV.
An example plot of L(ε;R∗1, R

∗
2) is shown in Fig. 2, using

the parameters S1 = S2 = 1 and considering the point
corresponding to ρ = 1

2 .
We proceed by discussing case (ii) in Theorem 2; a similar

discussion applies to case (iii). As in Nomura-Han [2] and Tan-
Kosut [3], the second-order asymptotics depend on V(ρ) and
Ψ−1. However, in our setting, the expression containing Ψ−1

alone (i.e. the expression obtained by setting β = 0 in (32))
corresponds to only considering the unique input distribution
N (0,Σ(ρ)) achieving the point (I1(ρ), I12(ρ)− I1(ρ)). From
Fig. 2, this is not sufficient to achieve all second-order coding
rates. Rather, we must allow the input distribution to vary with
n. This is manifested in the βD(ρ) term in (32). Roughly
speaking, this term arises by considering ρn converging to ρ
at a rate O

(
1√
n

)
, and applying a first-order Taylor expansion.
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Fig. 2. Second-order coding rates in nats/
√

use with S1 = S2 = 1, ρ = 1
2

and ε = 0.1. The regions are to the bottom-left of the boundaries shown.

We observe that for ρ ∈ (0, 1), the set in (32) is a half-space
which can alternatively be expressed as

L(ε;R∗1, R
∗
2) =

{
(L1, L2) ∈ R2 : L2 ≤ aρL1 + bρ,ε

}
, (34)

where the slope and intercept are given by

aρ :=
D12(ρ)−D1(ρ)

D1(ρ)
(35)

bρ,ε := inf
{
b ∈ R : ∃L1 ∈ R s.t.

(L1, (1 + aρ)L1 + b) ∈ Ψ−1(V(ρ), ε)
}

(36)

III. PROOF OF THEOREM 1

Due to space constraints, we provide only an outline of the
proof. Full details can be found in [10].

A. Converse

The steps of the converse proof are as follows.
1) A Reduction from Maximal to Equal Power Constraints:

Using the argument in [8, Lem. 39], it suffices to consider
codes such that the inequalities in (3) hold with equality.

2) A Reduction from Average to Maximal Error Probability:
Using similar arguments to [11, Sec 3.4.4], it suffices to
prove the converse for maximal (rather than average) error
probability.1 This is shown by starting with an average-error
code, and then constructing a maximal-error code as follows:
(i) Keep only the fraction 1√

n
of user 2’s messages with the

smallest error probability (averaged over user 1’s message);
(ii) For each of user 2’s messages, keep only the fraction 1√

n
of user 1’s messages with the smallest error probability.

3) Correlation Type Classes: Define I0 := {0} and Ik :=
(k−1n , kn ], k ∈ [n], and let I−k := −Ik for k ∈ [n]. Consider
the correlation type classes (or simply type classes)

Tn(k) :=

{
(x1,x2) :

〈x1,x2〉
‖x1‖2‖x2‖2

∈ Ik
}

(37)

1This argument is not valid for the standard MAC, but is possible here due
to the partial cooperation (i.e. user 1 knowing both messages).



where k ∈ [−n : n], and 〈x1,x2〉 :=
∑n
i=1 x1ix2i is the

standard inner product in Rn. The total number of type classes
is 2n+ 1, which is polynomial in n analogously to the finite
alphabet case [12, Ch. 2]. Using a similar argument to [12,
Lem. 16.2], it suffices to consider codes for which all pairs
(x1,x2) are in a single type class, say indexed by k. We define
ρ̂ := k

n according to that type class.
4) A Verdú-Han-type Converse Bound: For any γ > 0, we

can use standard arguments (e.g. [13, Lem. 2]) to prove the
following non-asymptotic converse bound:

εn ≥ Pr(An ∪ Bn)− 2 exp(−nγ), (38)

where

An :=

{
1

n

n∑
i=1

j1(X1i, X2i, Yi) ≤
1

n
logM1,n − γ

}
(39)

Bn :=

{
1

n

n∑
i=1

j12(X1i, X2i, Yi) ≤
1

n
log
(
M1,nM2,n

)
− γ

}
,

(40)

with Yi | {X1i = x1, X2i = x2} ∼ W (·|x1, x2). The value of
ρ used in the information densities j1 and j2 is arbitrary, and is
chosen to be ρ̂. The distribution of (X1,X2) is that induced
by the codebook, and by the preceding steps, its support is
restricted to {(x1,x2) ∈ Tn(k) : ‖xj‖22 = nSj , j = 1, 2}. We
henceforth let (x1,x2) be fixed on this support set.

5) Evaluation of the Verdú-Han Bound for ρ̂ ∈ (−1, 1):
Using the definitions of Tn(k) and the information densities
in (17), we show the following in [10]:∥∥∥∥∥E

[
1

n

n∑
i=1

j(x1i, x2i, Yi)

]
− I(ρ̂)

∥∥∥∥∥
∞

≤ ξ1
n

(41)∥∥∥∥∥Cov
[

1√
n

n∑
i=1

j(x1i, x2i, Yi)

]
−V(ρ̂)

∥∥∥∥∥
∞

≤ ξ2
n

(42)

for some ξ1 > 0 and ξ2 > 0 not depending on ρ̂. Substituting
these moments into (38) and using the fact that V(ρ) is non-
singular for ρ ∈ (−1, 1), we obtain the converse for the
first part of the theorem using standard steps based on the
multivariate Berry-Esseen theorem [14] (e.g. see [3])

6) Evaluation of the Verdú-Han Bound with ρ̂n → ±1:
The case ρ̂n := k

n → ±1 is treated separately because V(1) is
singular due to the fact that V1(1) = V1,12(1) = 0. The overall
approach is similar to the previous step, but the univariate
Berry-Esseen theorem [15, Sec. XVI.5] is used in place of the
multivariate version. We focus our attention on ρ̂n → 1.

Let Rj,n := 1
n logMj,n for j = 1, 2. Our aim is to show[

R1,n

R1,n +R2,n

]
∈ I(ρ̂n) +

Ψ−1
(
V(ρ̂n), ε

)
√
n

+ o

(
1√
n

)
1.

(43)

From the assumption ρ̂ → 1 and the structure of the matrix
V(1), it is not difficult to prove that it suffices to show[

R1,n

R1,n +R2,n

]
≤ I(ρ̂n) +

√
V12(1)

n

[
0

Φ−1(ε)

]
+ o

(
1√
n

)
1.

(44)

We further lower bound (38) by writing Pr(An ∪ Bn) ≥
max

{
Pr(An),Pr(Bn)

}
. Since V12(1) > 0, we can handle

the Pr(Bn) term in the same way as the single-user setting to
obtain the second element-wise inequality in (44).

Using an argument based on Taylor expansions, we show
in [10] that the mean and variance of

∑n
i=1 j1(x1i, x2i, Yi)

behave as Θ(1 − ρ̂n), and similarly for the sum of third
absolute moments. Using this observation, we treat two cases
separately: 1− ρ̂n = ω

(
1
n

)
and 1− ρ̂n = O

(
1
n

)
. In the former

case, the first element-wise inequality in (44) is obtained by
again using the Berry-Esseen theorem. In the latter case, the
same result is obtained using Chebyshev’s inequality.

B. Achievability
1) Random-Coding Ensemble: We use superposition cod-

ing [1, Ch. 5], with random codewords of the form{(
X2(m2), {X1(m1,m2)}M1,n

m1=1

)}M2,n

m2=1

∼
M2,n∏
m2=1

(
PX2(x2(m2))

M1,n∏
m1=1

PX1|X2
(x1(m1,m2)|x2(m2))

)
.

(45)

The codeword distributions PX2
and PX1|X2

are chosen as

PX2
(x2) =

1

µ2,n

n∏
i=1

PX2(x2i)1
{
x2 ∈ D2,n

}
, (46)

PX1|X2
(x1|x2) =

1

µ1,n(x2)

×
n∏
i=1

PX1|X2
(x1i|x2i)1

{
(x1,x2) ∈ Dn

}
, (47)

where PX1,X2
∼ N (0,Σ(ρ)) (see (9)), µ2,n and µ1,n(x2) are

normalizing constants, and

Dn :=

{(
x1,x2

)
: ‖x1‖22 ≤ nS1, ‖x2‖22 ≤ nS2,∣∣∣∣ 1n

n∑
i=1

ak(x1i, x2i)− E[ak(X1, X2)]

∣∣∣∣ ≤ δ

n
, k ∈ [K]

}
(48)

D2,n :=

{
x2 : Pr

(
(X′1,x2) ∈ Dn

∣∣X′2 = x2

)
≥ ψ(n)

2

}
.

(49)

Here {ak(x1, x2)}Kk=1 are auxiliary cost functions (assumed to
be arbitrary for now), δ and ψ(n) are constants, and we define
(X′1,X

′
2) ∼

∏n
i=1 PX1,X2

(x′1i, x
′
2i). This is an extension of

the ensemble studied in [16] to superposition coding.
Building on the analysis of [16], we show in [10] that, as

long as E[ak(X1, X2)2] < ∞ for each k, ψ(n) and δ can
be chosen such that µ2,n = Ω(n−(K+2)/2), and µ1,n(x2) =
Ω(n−(K+2)/2) for all x2 on the support of PX2

.
2) A Feinstein-type Achievability Bound: Using the above-

mentioned properties of µ1,n and µ2,n, we can use standard
threshold-based arguments (e.g. [5, Thm. 4]) to obtain

εn ≤ Pr(Fn ∪ Gn) +O

(
1√
n

)
, (50)



where

Fn :=

{
1

n

n∑
i=1

j1(X1i, X2i, Yi) ≤
1

n
logM1,n + γ

}
(51)

Gn :=

{
1

n

n∑
i=1

j12(X1i, X2i, Yi) ≤
1

n
log
(
M1,nM2,n

)
+ γ

}
(52)

and γ = O
(
logn
n

)
.

3) Evaluation of the Bound: The remainder of the proof
follows similar steps to the converse upon suitable choices of
the auxiliary costs. In particular, let us define

j(x1, x2) := E[j(x1, x2, Y )] (53)
v(x1, x2) := Cov[j(x1, x2, Y )], (54)

where (Y |x1, x2) ∼ W (·|x1, x2). For both ρ ∈ [0, 1) and
ρ → 1, we let the first 5 auxiliary costs equal the entries of
the vector and matrix in (53)–(54) (2 for j(x1, x2) and 3 for
the symmetric matrix v(x1, x2)). It follows from (48) that∥∥∥∥∥E

[
1

n

n∑
i=1

j(x1, x2, Yi)

]
− I(ρ)

∥∥∥∥∥
∞

≤ δ

n
, (55)∥∥∥∥∥Cov

[
1√
n

n∑
i=1

j(x1, x2, Yi)

]
−V(ρ)

∥∥∥∥∥
∞

≤ δ

n
(56)

for all (x1,x2) ∈ Dn, where the expectations and covariance
are taken with respect to Wn(·|x1,x2). The third moment(s)
can be bounded similarly by a suitable choice of the remaining
auxiliary cost(s) (K = 6 for the case ρ ∈ [0, 1), and K = 7
for the case ρ→ 1). This allows us to apply the Berry-Esseen
theorem and Chebyshev’s inequality as in the converse proof.

IV. PROOF OF THEOREM 2
A. Converse

The proof for case (i) (ρ = 0) is similar to the single-user
case [8], and is thus omitted. We consider cases (ii) and (iii).

1) Establishing The Convergence of ρn to ρ: Fix a cor-
relation coefficient ρ ∈ (0, 1], and consider any sequence of
codes satisfying (6)–(7) for some (R∗1, R

∗
2) on the boundary

parametrized by ρ, i.e. R∗1 = I1(ρ) and R∗1 + R∗2 = I12(ρ).
Letting Rn := [R1,n, R1,n+R2,n]T , it follows from the global
converse result that

Rn ∈ I(ρn) +
Ψ−1(V(ρn), ε)√

n
+ o

(
1√
n

)
1 (57)

for some (possibly non-unique) sequence {ρn}n≥1. We claim
that every such sequence {ρn}n≥1 converges to ρ. Indeed,
since the boundary of the capacity region is curved and
uniquely parametrized by ρ for ρ ∈ (0, 1], ρn 6→ ρ implies
for some δ > 0 and for all sufficiently large n that either
I1(ρn) ≤ I1(ρ)− δ or I12(ρn) ≤ I12(ρ)− δ. Combining this
with (57), we deduce that R1,n ≤ I1(ρ)− δ

2 or R1,n+R2,n ≤
I12(ρ) − δ

2 for sufficiently large n. This, in turn, contradicts
the convergence of (R1,n, R2,n) to (R∗1, R

∗
2) implied by (6).

2) Establishing The Convergence Rate of ρn to ρ: Since
I(ρ) is twice continuously differentiable, we have

I(ρn) = I(ρ) + D(ρ)(ρn − ρ) +O
(
(ρn − ρ)2

)
1. (58)

In the case that ρn − ρ = ω
(

1√
n

)
, (57) and (58) imply

Rn ≤ I(ρ) + D(ρ)(ρn − ρ) + o(ρn − ρ)1. (59)

Since the first entry of D(ρ) is negative and the second entry
is positive, (59) states that L1 = +∞ (i.e. a large addition to
R∗1) only if L1+L2 = −∞ (i.e. a large backoff from R∗1+R∗2),
and L1 + L2 = +∞ only if L1 = −∞. Thus, this case does
not play a role in the characterization of L(ε;R∗1, R

∗
2), and we

may proceed by focusing on the case that ρn − ρ = O
(

1√
n

)
.

3) Completion of the Proof: First consider case (ii), i.e. ρ ∈
(0, 1). Assuming now that ρn − ρ = O

(
1√
n

)
, we can use the

Bolzano-Weierstrass theorem [17, Thm. 3.6(b)] to conclude
that there exists a subsequence {nk}k≥1 such that

√
nk(ρnk

−
ρ)→ β for some β ∈ R. Combining this observation with (57)
and (58) yields (32). Case (iii) is handled similarly, except that
β ≤ 0 (since ρn may only approach one from below), and the
set Ψ−1 takes an alternative form similarly to (44).

B. Achievability

The achievability part is similar to the converse part, yet
simpler. Specifically, we can simply choose ρn := ρ + β√

n
,

and apply the above arguments based on Taylor expansions.
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region of constant-composition codes for the multiple-access channel.
In Allerton Conference, 2013. arXiv:1303.6167 [cs.IT].

[7] E. Haim, Y. Kochman, and U. Erez. A note on the dispersion of network
problems. In Convention of Electrical and Electronics Engineers in
Israel (IEEEI), 2012.

[8] Y. Polyanskiy, H. V. Poor, and S. Verdú. Channel coding in the finite
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