
Multiuser Coding Techniques
for Mismatched Decoding

Jonathan Scarlett, Alfonso Martinez and Albert Guillén i Fàbregas

Abstract

This paper studies multiuser coding techniques for channel coding with a given (possibly suboptimal) decoding
rule. For the mismatched discrete memoryless multiple-access channel, error exponents are obtained which are tight with
respect to the ensemble average, and positive within the interior of Lapidoth’s achievable rate region. In the special case of
maximum-likelihood decoding, the ensemble tightness of the exponent of Liu-Hughes is proved. Alternative expressions
for the error exponents and rate regions are given, including expressions obtained using Lagrange duality which extend
immediately to general alphabets.

In the setting of single-user mismatched decoding, similar analysis techniques are applied to two types of superposition
coding. The standard version is shown to yield an achievable rate which is at least as high as that of Lapidoth’s expurgated
parallel coding rate after the optimization of the parameters. A refined version of superposition coding is shown to achieve
rates at least as good as the standard version for any set of random-coding parameters, and it is shown that the gap between
the two can be significant when the input distribution is fixed.

Index Terms

Mismatched decoding, multiple-access channels, superposition coding, random coding, error exponents, ensemble
tightness, duality, maximum-likelihood decoding.

I. INTRODUCTION

The mismatched decoding problem [1]–[9] seeks to characterize the performance of point-to-point communication
when the decoding rule is fixed and possibly suboptimal. This problem is of interest, for example, when the optimal
decoding rule is infeasible due to channel uncertainty or implementation constraints. Finding a single-letter expression
for the mismatched capacity (i.e. the highest achievable rate with mismatched decoding) remains an open problem even
for single-user discrete memoryless channels.

Network information theory problems with mismatched decoding are not only of independent interest, but can also
provide valuable insight into the single-user mismatched decoding problem. In particular, it was shown by Lapidoth that
higher random-coding rates can be obtained by treating the single-user channel as a multiple-access channel (MAC)
and generating multiple codebooks in parallel [6].

In this paper, we build on the work of [6] and study multiuser coding techniques for channels with mismatched
decoding. We revisit the mismatched MAC, and provide a derivation of the achievable rate region given in [6] which
yields non-asymptotic bounds and ensemble-tight error exponents as intermediate steps. Furthermore, an alternative
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expression for the region is given which extends immediately to general alphabets. Building on the analysis techniques
developed for the MAC, we study two types of superposition coding for single-user mismatched channels, and provide
the achievable rates and error exponents corresponding to each.

A. System Setup

Throughout the paper, we consider both the mismatched single-user channel and the mismatched multiple-access
channel. Here we provide a detailed description of each.

1) Mismatched Single-User Channel: The input and output alphabets are denoted by X and Y respectively, and the
channel transition law is denoted by W (y|x), thus yielding an n-letter transition law given by

Wn(y|x) ,
n∏
i=1

W (yi|xi). (1)

If X and Y are finite, the channel is referred to as a discrete memoryless channel (DMC). We consider length-n block
coding, in which a codebook C = {x(1), . . . ,x(M)} is known at both the encoder and decoder. The encoder takes as
input a message m uniformly distributed on the set {1, . . . ,M}, and transmits the corresponding codeword x(m). The
decoder receives the vector y at the output of the channel, and forms the estimate

m̂ = arg max
j∈{1,...,M}

qn(x,y), (2)

where n is the length of each codeword, x(j)i is the i-th entry of x(j) (similarly for yi), and qn(x,y) ,
∏n
i=1 q(xi, yi).

The function q(x, y) is called the decoding metric, and is assumed to be non-negative. In the case of a tie, a codeword
achieving the maximum in (2) is selected uniformly at random. In the case that q(x, y) = W (y|x), the decoding rule
in (2) is that of optimal maximum-likelihood (ML) decoding.

A rate R is said to be achievable if, for all δ > 0, there exists a sequence of codebooks with at least exp(n(R− δ))
codewords and vanishing error probability under the decoding metric q. The mismatched capacity of a given channel
and metric is defined to be the supremum of all achievable rates.

An error exponent E(R) is said to be achievable if there exists a sequence of codebooks Cn with M ≥ exp(nR)

codewords of length n such that

lim inf
n→∞

− 1

n
log pe(Cn) ≥ E(R). (3)

We let pe(n,M) denote the average error probability with respect to a given random-coding ensemble which will be
clear from the context. The random-coding error exponent Er(R) is said to exhibit ensemble tightness if

lim
n→∞

− 1

n
log pe(n, e

nR) = Er(R). (4)

This definition requires that the limit exists.
2) Mismatched Multiple-Access Channel: We also consider a 2-user memoryless MAC W (y|x1, x2) with input

alphabets X1 and X2 and output alphabet Y . In the case that each alphabet is finite, the MAC is referred to as a
discrete memoryless MAC (DM-MAC). The decoding metric is denoted by q(x1, x2, y), and we write Wn(y|x1,x2) ,∏n
i=1W (yi|x1,i, x2,i) and qn(x1,x2,y) ,

∏n
i=1 q(x1,i, x2,i, yi).

Each encoder ν = 1, 2 takes as input a message mν uniformly distributed on the set {1, . . . ,Mν}, and transmits the
corresponding codeword x

(mν)
ν from the codebook Cν = {x(1)

ν , . . . ,x
(Mν)
ν }. Upon receiving the signal y at the output

of the channel, the decoder forms an estimate (m̂1, m̂2) of the messages, given by

(m̂1, m̂2) = arg max
i∈{1,...,M1},j∈{1,...,M2}

qn(x
(i)
1 ,x

(j)
2 ,y). (5)
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We assume that ties are broken at random. An error is said to have occurred if the estimate (m̂1, m̂2) differs from
(m1,m2). The error probability for a given pair of codebooks (C1, C2) is denoted by pe(C1, C2), and the error probability
for a given random-coding ensemble is denoted by pe(n,M1,M2). We define achievable rates, error exponents and
ensemble tightness similarly to the single-user setting. Similarly to the single-user case, optimal ML decoding is
recovered by setting q(x1, x2, y) = W (y|x1, x2).

B. Notation

We use bold symbols for vectors (e.g. x), and denote the corresponding i-th entry using a subscript (e.g. xi). All
logarithms have base e, and all rates are in units of nats except in the examples, where bits are used. We define
[c]+ = max{0, c}, and denote the indicator function by 11{·}.

The set of all probability distributions on an alphabet, say X , is denoted by P(X ), and the set of all empirical
distributions on a vector in Xn (i.e. types [10, Ch. 2], [11]) is denoted by Pn(X ). Similar notations P(Y|X ) and
Pn(Y|X ) are used for conditional distributions. For a given Q ∈ Pn(X ), the type class Tn(Q) is defined to be the
set of all sequences in Xn with type Q. For a given joint type PXY ∈ Pn(X × Y) and sequence x ∈ Tn(PX), the
conditional type class Tnx (PXY ) is defined to be the set of all sequences y such that (x,y) ∈ Tn(PXY ). Further
definitions and results related to the method of types are presented in Appendix A.

The probability of an event is denoted by P[·]. The marginals of a joint distribution PXY (x, y) are denoted by
PX(x) and PY (y). We write PX = P̃X to denote element-wise equality between two probability distributions on the
same alphabet. Expectation with respect to a joint distribution PXY (x, y) is denoted by EP [·], or simply E[·] when the
associated probability distribution is understood from the context. Similarly, mutual information with respect to PXY
is written as IP (X;Y ), or simply I(X;Y ) when the distribution is understood from the context. Given a distribution
Q(x) and conditional distribution W (y|x), we write Q×W to denote the joint distribution defined by Q(x)W (y|x).

For two positive sequences fn and gn, we write fn
.
= gn if limn→∞

1
n log fn

gn
= 0, fn ≤̇ gn if lim supn→∞

1
n log fn

gn
≤

0, and similarly for ≥̇. When these symbols are used, we assume that the implicit subexponential factors can be upper and
lower bounded by universal subexponential quantities; when we consider the discrete memoryless case these quantities
may depend on the input and output alphabet sizes. In particular, this assumption implies that supi fi(n)

.
= supi gi(n)

for any (possibly infinite) set of sequences such that fi(n)
.
= gi(n) for all i. We make use of the standard asymptotic

notations O(·), o(·) and Ω(·).

C. Previous Work

The majority of the literature on mismatched decoding has focused on achievable rates for the single-user setting.
The most notable early works are by Hui [1] and Csiszár and Körner [2], who independently derived the achievable
rate known as the LM rate, given by

ILM(Q) , min
P̃XY : P̃X=Q,P̃Y =PY

EP̃ [log q(X,Y )]≥EP [log q(X,Y )]

IP̃ (X;Y ), (6)

where PXY = Q×W . This rate can equivalently be expressed as [4]

ILM(Q) = sup
s≥0,a(·)

E
[
log

q(X,Y )sea(X)

E[q(X,Y )sea(X) |Y ]

]
, (7)

where (X,Y ) ∼ Q×W .
In the terminology of Ganti et al. [7], (6) is the primal expression and (7) is the dual expression. This is consistent

with the fact that the equivalence between the two can be proved using Lagrange duality [4], [12]. The primal
expression can be proved using constant-composition random coding and the method of types. On the other hand,
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the dual expression can be proved using cost-constrained random-coding without relying on the method of types, thus
generalizing immediately to general alphabets [7].

Another rate which as received attention in the literature is the generalized mutual information (GMI), defined
similarly to (6)–(7) but without the constraint P̃X = Q in (6), and with the supremum over a(·) replaced by a(·) = 0

in (7). The GMI is obtained using i.i.d. random coding, and is in general strictly smaller than the LM rate.
A matching converse to the LM rate for binary-input DMCs was given in [5]. In general, however, the LM rate is not

tight [3], [6], and the problem of finding the mismatched capacity is open in general. Motivated by the lack of converse
results, the concept of ensemble tightness has been addressed in [4], [7], [8]. It has been shown that, for any DMC,
the LM rate is the best rate possible for the constant-composition and cost-constrained random-coding ensembles, and
the GMI is the best rate possible for the i.i.d. ensemble. Such results are often referred to as random-coding converses.

In [3], Csiszár and Narayan showed that better achievable rates can be obtained by applying the LM rate to the
channel W (2)

(
(y1, y2)|(x1, x2)

)
= W (y1|x1)W (y2|x2) with the metric q(2)

(
(x1, x2), (y1, x2)

)
= q(x1, y1)q(x2, y2),

and similarly for the k-th order products of W and q. It was conjectured that the resulting rate approaches the
mismatched capacity as k →∞, and this conjecture has recently been reported true by Somekh-Baruch [13]

Random-coding error exponents for mismatched decoding were given in [8], [14], [15], and ensemble tightness was
addressed in [8]. In particular, it was shown in [8] that for any DMC and metric, the ensemble-tight exponent for the
constant-composition ensemble can be obtained using the cost-constrained ensemble with at most two cost constraints.

The mismatched MAC was considered by Lapidoth [6], who obtained an achievable rate region and showed the
surprising fact that the single-user LM rate can be improved by treating the single-user channel as a MAC. Lapidoth
also addressed the issue of ensemble tightness, showing that random-coding error probability tends to one for rate pairs
outside the given achievable rate region.

As an example, Lapidoth considered the channel in Figure 1 consisting of two parallel binary symmetric channels
(BSCs) with crossover probabilities δ1 < 0.5 and δ2 < 0.5. The mismatched decoder assumes that both crossover
probabilities are equal to δ < 0.5. By treating the channel as a mismatched single-user channel from (x1, x2) to
(y1, y2) and using random coding with a uniform distribution on the quaternary input alphabet, one can only achieve
rates R satisfying

R ≤ 2

(
1−H2

(
δ1 + δ2

2

))
bits/use, (8)

where H2(·) is the binary entropy function in bits. On the other hand, by treating the channel as a mismatched MAC
from x1 and x2 to (y1, y2) and using random coding with equiprobable input distributions on each binary input alphabet,
one can achieve any sum-rate R satisfying

R ≤
(
1−H2(δ1)

)
+
(
1−H2(δ2)

)
bits/use. (9)

This is the best rate possible even under maximum-likelihood (ML) decoding.
In a work which developed independently of ours, Somekh-Baruch [9] gave error exponents and rate regions for

the cognitive MAC (i.e. the MAC where one user knows both messages and the other only knows its own) using
two multiuser coding schemes: superposition coding and random binning. When applied to single-user mismatched
channels, these yield achievable rates which can improve on those of Lapidoth when certain auxiliary variables are
fixed. There is some overlap in our work and the superposition coding results given in [9], but throughout the paper
we focus primarily on results which are being presented for the first time.

Error exponents for the matched MAC were presented in [16]–[20]. In particular, Liu and Hughes [19] derived
an achievable exponent using constant-composition codes, and showed that in contrast to the single-user setting, the
exponent can improve over that of i.i.d. random codes [17] even after the optimization of the input distributions. To
our knowledge, ensemble tightness has not been proved previously for these ensembles, even in the matched case.
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Figure 1. Parallel BSC example [6].

While error exponents for the mismatched MAC are presented in [20], they are not tight enough to prove the
achievability of Lapidoth’s rate region. For example, for the parallel BSC example in Figure 1 with uniform input
distributions, the exponents of [20] are only positive when the sum-rate R satisfies (8).

D. Contributions

The main contributions of this paper are as follows:

• In Section II, we present a number of general upper and lower bounds on the probability of a multiply-indexed
union. We give sufficient conditions under which the upper and lower bounds coincide to within a constant factor,
thus providing a tool to perform a tight analysis of the random-coding error probability of multiuser random-coding
ensembles. Furthermore, we present generic equivalences of optimization problems using Lagrange duality [12],
thus providing the tools to obtain alternative expressions for various rates and exponents.

• In Section III, we study the mismatched MAC. Using constant-composition random coding and the above-
mentioned union bounds, we provide an alternative derivation of Lapidoth’s achievable rate region [6] which yields
non-asymptotic bounds and ensemble-tight error exponents as intermediate steps. By specializing our exponents
to ML decoding, we prove the ensemble tightness of the exponent given in [19] for constant-composition random
coding.

• Using the method of Lagrange duality [12], we provide alternative expressions for the achievable rate region
and error exponent for the DM-MAC. We show that the dual expressions can be obtained directly using cost-
constrained random coding, thus proving their validity in the case of general alphabets. Furthermore, we study
the number of costs needed for the cost-constrained ensemble to match the performance of constant-composition
codes in the discrete memoryless setting.

• Using similar techniques to those used in our MAC analysis, we study two types of superposition coding for
single-user mismatched channels. We show that the standard version of superposition coding (Section IV) yields
a rate at least as high as that of Lapidoth’s expurgated MAC ensemble [6, Thm. 4] after the optimization of the
parameters. Furthermore, we show that a refined version of superposition coding (Section V) yields rates at least
as high as the standard version for any choice of parameters, with significant improvements possible when the
input distribution is fixed. The rates for each ensemble are expressed in both primal and dual forms, and the latter
are shown to be valid in the case of general alphabets.

For the mismatched DMC, the results of this paper can be summarized by the following list of random-coding
constructions, in decreasing order of rate:
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1) Refined superposition coding (Theorems 17 and 19),
2) Standard superposition coding (Theorems 14 and 16),
3) Expurgated parallel coding ([6, Thm. 4] and Theorem 11),
4) Constant-composition or cost-constrained coding with independent codewords (LM Rate [1], [2], [7]),
5) i.i.d. coding with independent codewords (GMI [14]).

Numerical examples are provided in Section V-C.

II. PRELIMINARY RESULTS

In this section, we present a number of general tools and results which will be used throughout the paper.

A. Bounds on the Probability of a Multiply-Indexed Union

In single-user and multiuser channel coding settings, bounds on the random-coding error probability are typically
obtained using the union bound, which states that for any set of events {Ai}Mi=1,

P
[⋃
i

Ai

]
≤
∑
i

P[Ai]. (10)

In many cases the right-hand side of (10) is greater than one, and hence a tighter bound is given by the truncated union
bound, namely

P
[⋃
i

Ai

]
≤ min

{
1,
∑
i

P[Ai]
}
. (11)

In this paper, we will also be interested in lower bounds on the probability of a union, which will be used to prove
ensemble tightness results. In particular, we will make use of de Caen’s bound [21], which states that

P
[⋃
i

Ai

]
≥
∑
i

P[Ai]
2∑

i′ P[Ai ∩Ai′ ]
. (12)

In the case that the events are pairwise independent and identically distributed, it is easily verified that (12) proves the
tightness of (11) to within a factor of 1

2 [22]. This tightness result in fact holds even when the events are not identically
distributed [23, Lemma A.2].

In this section, we provide a number of upper and lower bounds on the probability of a multiply-indexed union.
In several cases of interest, the upper and lower bounds coincide to within a constant factor, and generalize the
above-mentioned tightness result of [22] to certain settings where pairwise independence need not hold.

Lemma 1. Let {Z1(i)}M1
i=1 and {Z2(j)}M2

j=1 be independent sequences of identically distributed random variables on

the alphabets Z1 and Z2 respectively, with Z1(i) ∼ PZ1
and Z2(j) ∼ PZ2

. For any set A ⊆ Z1 ×Z2, we have

P
[⋃
i,j

{(
Z1(i), Z2(j)

)
∈ A

}]
≤ min

{
1,M1E

[
min

{
1,M2P

[
(Z1, Z2) ∈ A

∣∣Z1

]}]
,

M2E
[

min
{

1,M1P
[
(Z1, Z2) ∈ A

∣∣Z2

]}]}
(13)

where (Z1, Z2) ∼ PZ1
× PZ2

.

Proof: Applying the union bound to the union over i, we obtain

P
[⋃
i,j

{(
Z1(i), Z2(j)

)
∈ A

}]
≤M1P

[⋃
j

{(
Z1, Z2(j)

)
∈ A

}]
(14)

= M1E
[
P
[⋃

j

{(
Z1, Z2(j)

)
∈ A

} ∣∣∣∣Z1

]]
. (15)
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Applying the truncated union bound to the union over j, we obtain

P
[⋃
i,j

{(
Z1(i), Z2(j)

)
∈ A

}]
≤M1E

[
min

{
1,M2P

[
(Z1, Z2) ∈ A

∣∣Z1

]}]
, (16)

thus recovering the second term in the outer minimization in (13). The third term is obtained similarly by applying the
union bounds in the opposite order, and the upper bound of 1 is trivial.

Lemma 2. Let {Z1(i)}M1
i=1 and {Z2(j)}M2

j=1 be independent sequences of pairwise independent and identically dis-

tributed random variables on the alphabets Z1 and Z2 respectively, with Z1(i) ∼ PZ1
and Z2(j) ∼ PZ2

. For any set

A ⊆ Z1 ×Z2, we have

P
[⋃
i,j

{(
Z1(i), Z2(j)

)
∈ A

}]
≥ 1

4
min

{
1,M1

P
[
(Z1, Z2) ∈ A

]2
P
[
(Z1, Z2) ∈ A ∩ (Z1, Z ′2) ∈ A

] ,
M2

P
[
(Z1, Z2) ∈ A

]2
P
[
(Z1, Z2) ∈ A ∩ (Z ′1, Z2) ∈ A

] ,M1M2P
[
(Z1, Z2) ∈ A

]}
, (17)

where (Z1, Z
′
1, Z2, Z

′
2) ∼ PZ1

(z1)PZ1
(z′1)PZ2

(z2)PZ2
(z′2).

Proof: We make use of de Caen’s bound in (12). Noting by symmetry that each term in the outer summation is
equal, and splitting the inner summation according to which of the (i, j) indices coincide with (i′, j′), we obtain

P
[⋃
i,j

{(
Z1(i), Z2(j)

)
∈ A

}]
≥M1M2P

[
(Z1, Z2) ∈ A

]2(
(M1 − 1)(M2 − 1)P

[
(Z1, Z2) ∈ A

]
+ (M2− 1)P

[
(Z1, Z2) ∈ A ∩ (Z1, Z

′
2) ∈ A

]
+ (M1− 1)P

[
(Z1, Z2) ∈ A ∩ (Z ′1, Z2) ∈ A

]
+P
[
(Z1, Z2) ∈ A

])−1
(18)

≥M1M2P
[
(Z1, Z2) ∈ A

]2(
4 max

{
M1M2P

[
(Z1, Z2) ∈ A

]
,M2P

[
(Z1, Z2) ∈ A ∩ (Z1, Z

′
2) ∈ A

]
,

M1P
[
(Z1, Z2) ∈ A ∩ (Z ′1, Z2) ∈ A

]
,P
[
(Z1, Z2) ∈ A

]})−1
, (19)

from which the lemma follows.
The following lemma gives conditions under which a weakened version of (13) coincides with (17) to within a factor

of four.

Lemma 3. Let {Z1(i)}M1
i=1 and {Z2(j)}M2

j=1 be independent sequences of identically distributed random variables on

the alphabets Z1 and Z2 respectively, with Z1(i) ∼ PZ1
and Z2(j) ∼ PZ2

. Fix a set A ⊆ Z1 ×Z2, and define

A1 ,
{
z1 : (z1, z2) ∈ A for some z2

}
(20)

A2 ,
{
z2 : (z1, z2) ∈ A for some z1

}
. (21)

1) A general upper bound is given by

P
[⋃
i,j

{(
Z1(i), Z2(j)

)
∈ A

}]
≤ min

{
1,M1P

[
Z1 ∈ A1

]
,M2P

[
Z2 ∈ A2

]
,M1M2P

[
(Z1, Z2) ∈ A

]}
, (22)

where (Z1, Z2) ∼ PZ1 × PZ2 .

2) If (i) {Z1(i)}M1
i=1 are pairwise independent, (ii) {Z2(j)}M2

j=1 are pairwise independent, (iii) P
[
(z1, Z2) ∈ A

]
is the
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same for all z1 ∈ A1, and (iv) P
[
(Z1, z2) ∈ A

]
is the same for all z2 ∈ A2, then

P
[⋃
i,j

{(
Z1(i), Z2(j)

)
∈ A

}]
≥ 1

4
min

{
1,M1P

[
Z1 ∈ A1

]
,M2P

[
Z2 ∈ A2

]
,M1M2P

[
(Z1, Z2) ∈ A

]}
. (23)

Proof: We obtain (22) by weakening (13) in multiple ways. The second term in (22) follows since the inner
probability in the second term of (13) is zero whenever P[Z1 /∈ A], and since min{1, α} ≤ 1. The third term in (22)
is obtained similarly, and the fourth term follows from the fact that min{1, α} ≤ α.

The lower bound in (23) follows from (17), and since the additional assumptions in the second part of the lemma
statement imply

P
[
(Z1, Z2) ∈ A

]2
P
[
(Z1, Z2) ∈ A ∩ (Z1, Z ′2) ∈ A

] =
P
[
Z1 ∈ A1

]2P[(z1, Z2) ∈ A
]2

P
[
Z1 ∈ A1

]
P
[
(z1, Z2) ∈ A

]2 , (24)

= P
[
Z1 ∈ A1

]
(25)

where z1 is an arbitrary element of A1. The third term in the minimization in (17) can be handled similarly.
While we will primarily be interested in doubly-indexed unions in this paper, it will prove useful to state the following

generalization of Lemma 3 to the probability of a union indexed by K values, which is stated without proof. For a
given subset K = {k1, · · · , k|K|} of {1, · · · ,K}, we write ZK as a shorthand for (Zk1 , · · · , Zk|K|), and similarly for
ZKc . The corresponding realizations are written by zK = (zk1 , · · · , zk|K|), and similarly for zKc .

Lemma 4. Let {Z1(i1)}M1
i1=1, · · · , {ZK(iK)}MK

iK=1 be independent sequences of identically distributed random variables

on the alphabets Z1, · · · ,ZK respectively, with Zk(i) ∼ PZk for k = 1, · · · ,K. Fix a set A ⊆ Z1 × · · · × ZK , and

for each K = {k1, · · · , k|K|} ⊆ {1, · · · ,K} define

AK ,
{
zK : (z1, · · · , zK) ∈ A for some zKc

}
(26)

1) A general upper bound is given by

P
[ ⋃
i1,··· ,iK

{(
Z1(i1), · · · , ZK(iK)

)
∈ A

}]
≤ min

{
1, min
K⊆{1,··· ,K},K6=∅

( ∏
k∈K

Mk

)
P
[
ZK ∈ AK

]}
, (27)

where (Z1, · · · , ZK) ∼∏K
k=1 PZk .

2) If {Zk(i)}Mk
i=1 are pairwise independent for any given k, and P

[
(Z1, · · · , ZK) ∈ A

∣∣ZK = zK
]

is the same for

all zK ∈ AK for any given K ⊆ {1, · · · ,K}, then

P
[ ⋃
i1,··· ,iK

{(
Z1(i1), · · · , ZK(iK)

)
∈ A

}]
≥ 2−K min

{
1, min
K⊆{1,··· ,K},K6=∅

( ∏
k∈K

Mk

)
P
[
ZK ∈ AK

]}
, (28)

where (Z1, · · · , ZK) ∼∏K
k=1 PZk .

B. Equivalent Forms of Convex Optimization Problems

The exponents and rates derived in this paper will be presented in both primal and dual forms, analogously to the
LM rate in (6)–(7). The corresponding proofs of equivalence are more involved than that of the LM rate (see [4]). Here
we provide two lemmas which will be useful in proving the equivalences. The following lemma is a generalization of
the fact that (6) and (7) are equivalent, which is proved using Lagrange duality [12].

Lemma 5. Fix the finite alphabets Z1 and Z2, the non-negative functions f(z1, z2) and g(z1, z2), the distributions
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PZ1 and PZ2 , and a constant β. The optimization

min
P̃Z1Z2

: P̃Z1
=PZ1

,P̃Z2
=PZ2

,

EP̃ [log f(Z1,Z2)]≥β

IP̃ (Z1;Z2)− EP̃ [log g(Z1, Z2)] (29)

has the same value as

sup
λ≥0,µ1(·)

−
∑
z2

PZ2(z2) log
∑
z1

PZ1(z1)f(z1, z2)λg(z1, z2)eµ1(z1) +
∑
z1

PZ1(z1)µ1(z1) + λβ, (30)

where the supremum over µ1(·) is taken over all real-valued functions on Z1.

Proof: See Appendix B.
When using Lemma 5, we will typically be interested the case that either g(·, ·) is absent from (29), or the constraint

EP̃ [log f(Z1, Z2)] ≥ β is absent. In the former case, the dual expression is given by (30) with g(·, ·) = 1, and in the
latter case, the dual expression is given by (30) with λ = 0. Observing the symmetry of (29) in Z1 and Z2, it can be
seen that the roles of the two can also be swapped in (30).

The following lemma will allow certain convex optimization problems to be expressed in a form where, after some
simple manipulations, Lemma 5 can be applied.

Lemma 6. Fix a positive integer d and let D be a convex subset of Rd. Let f(z), g(z), g1(z) and g2(z) be convex

functions mapping Rd to R such that

g1(z) + g2(z) ≤ g(z) (31)

for all z ∈ D. Then the optimization

min
z∈D

f(z) +
[

max
{
g1(z), g2(z), g(z)

}]+
(32)

has the same value as

max

{
min
z∈D

f(z) +
[

max
{
g1(z), g(z)

}]+
,min
z∈D

f(z) +
[

max
{
g2(z), g(z)

}]+}
. (33)

Proof: See Appendix B.

III. MULTIPLE-ACCESS CHANNEL

In this section, we study the mismatched multiple-access channel introduced in Section I-A2. We consider random
coding, in which each codeword of user ν = 1, 2 is generated independently according to some distribution PXν

. We
let X(i)

ν be the random variable corresponding to the i-th codeword of user ν, yielding(
{X(i)

1 }M1
i=1, {X

(j)
2 }M2

i=1

)
∼

M1∏
i=1

PX1(x
(i)
1 )

M2∏
j=1

PX2(x
(j)
2 ). (34)

We assume without loss of generality that message (1, 1) is transmitted, and write X1 and X2 in place of X(1)
1 and

X
(1)
2 . We write X1 and X2 to denote arbitrary codewords which are generated independently of X1 and X2. The

random sequence at the output of the channel is denoted by Y . It follows that

(X1,X2,Y ,X1,X2) ∼ PX1(x1)PX2(x2)Wn(y|x1,x2)PX1(x1)PX2(x2). (35)

All of our results can be extended to the setting in which the codewords are generated conditionally on a time-sharing
sequence u (e.g. see [20]). However, this leads to more complex notation, and also introduces a number of subtle
issues in the mismatched setting which are not present in the matched setting. Thus, we focus primarily on the case
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that there is no time-sharing. In Section III-E, we state the corresponding results with time-sharing, and discuss the
differences between the matched and mismatched settings.

We distinguish between the following three types of error:

(Type 1) m̂1 6= m1 and m̂2 = m2

(Type 2) m̂1 = m1 and m̂2 6= m2

(Type 12) m̂1 6= m1 and m̂2 6= m2

The corresponding random-coding error probabilities for these events are denoted by pe,1(n,M1), pe,2(n,M2) and
pe,12(n,M1,M2) respectively, and the overall random-coding error probability is denoted by pe(n,M1,M2). Clearly
we have

max{pe,1, pe,2, pe,12} ≤ pe ≤ pe,1 + pe,2 + pe,12. (36)

A. Random-Coding Bounds

The following theorem extends the random-coding union (RCU) bound for mismatched decoders [8], [24] to the
MAC.

Theorem 1. Under the random-coding distributions PX1
and PX2

, the ensemble-average error probabilities for the

maximum-metric decoder satisfy

pe,1(n,M1) ≤ rcu1(n,M1) (37)

pe,2(n,M2) ≤ rcu2(n,M2) (38)

pe,12(n,M1,M2) ≤ min
{

rcu12,1(n,M1,M2), rcu12,2(n,M1,M2)
}

(39)

for errors of type 1, 2 and 12 respectively, where

rcu1(n,M1) , E
[
min

{
1, (M1 − 1)P

[
qn(X1,X2,Y )

qn(X1,X2,Y )
≥ 1

∣∣∣∣X1,X2,Y

]}]
(40)

rcu2(n,M2) , E
[
min

{
1, (M2 − 1)P

[
qn(X1,X2,Y )

qn(X1,X2,Y )
≥ 1

∣∣∣∣X1,X2,Y

]}]
(41)

rcu12,1(n,M1,M2) ,

E

[
min

{
1, (M1 − 1)E

[
min

{
1, (M2 − 1)P

[
qn(X1,X2,Y )

qn(X1,X2,Y )
≥ 1

∣∣∣∣X1

]} ∣∣∣∣X1,X2,Y

]}]
(42)

rcu12,2(n,M1,M2) ,

E

[
min

{
1, (M2 − 1)E

[
min

{
1, (M1 − 1)P

[
qn(X1,X2,Y )

qn(X1,X2,Y )
≥ 1

∣∣∣∣X2

]} ∣∣∣∣X1,X2,Y

]}]
. (43)

Proof: For the type-1 and type-2 error probabilities, the RCU bounds follow using the same steps as the single-user
setting [24]. For the type-12 error, we have

pe,12 ≤ P

 ⋃
i 6=1,j 6=1

{
qn(X

(i)
1 ,X

(j)
2 ,Y )

qn(X1,X2,Y )
≥ 1

} (44)

= E

P
 ⋃
i 6=1,j 6=1

{
qn(X

(i)
1 ,X

(j)
2 ,Y )

qn(X1,X2,Y )
≥ 1

} ∣∣∣∣∣X1,X2,Y

 . (45)
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We obtain (42)–(43) by applying Lemma 1 to the union in (45), with Z1(i) = X
(i)
1 and Z2(j) = X

(j)
2 . In each case

we upper bound the minimum of three values in (13) by a minimum of two values.
The type-1 and type-2 RCU bounds in (40)–(41) have appeared previously [25], along with the type-12 RCU bound

rcu′12(n,M1,M2) , E
[
min

{
1, (M1 − 1)(M2 − 1)P

[
qn(X1,X2,Y )

qn(X1,X2,Y )
≥ 1

∣∣∣∣X1,X2,Y

]}]
. (46)

Both rcu12,1 and rcu12,2 are always less than or equal to rcu′12, and hence give better bounds on the error probability. We
will see that in the mismatched setting, rcu′12 yields not only a worse non-asymptotic bound, but also a worse achievable
rate region and error exponent. While no such losses in the rates and exponents are observed under ML decoding (see
Section III-D), the refined RCU bounds rcu12,1 and rcu12,2 are still of independent interest for characterizing the
non-asymptotic performance.

B. Exponents and Rates for the DM-MAC

In this section, we study the DM-MAC using the constant-composition ensemble, previously studied by Liu and
Hughes [19], among others. For ν = 1, 2, we fix Qν ∈ P(Xν) and take PXν

to be the uniform distribution on the type
class Tn(Qν,n), where Qν,n ∈ Pn(Xν) is the most probable type under Qν , i.e.

PXν (xν) =
1

|Tn(Qν,n)|11
{
xν ∈ Tn(Qν,n)

}
. (47)

Our analysis is based on the method of types; the main properties used are given in Appendix A. Throughout the
section, we write f(Q) to denote a function f that depends on Q1 and Q2. Similarly, we write f(Qn) to denote a
function that depends on Q1,n and Q2,n.

1) Error Exponent: The error exponents and achievable rates will be expressed in terms of the sets

Scc(Q) ,
{
PX1X2Y ∈ P(X1 ×X2 × Y) : PX1

= Q1, PX2
= Q2

}
(48)

T cc
1 (PX1X2Y ) ,

{
P̃X1X2Y ∈ P(X1 ×X2 × Y) :

P̃X1 = PX1 , P̃X2Y = PX2Y ,EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )]

}
(49)

T cc
2 (PX1X2Y ) ,

{
P̃X1X2Y ∈ P(X1 ×X2 × Y) :

P̃X2
= PX2

, P̃X1Y = PX1Y ,EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )]

}
(50)

T cc
12 (PX1X2Y ) ,

{
P̃X1X2Y ∈ P(X1 ×X2 × Y) :

P̃X1
= PX1

, P̃X2
= PX2

, P̃Y = PY ,EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )]

}
. (51)

The following theorem gives the random-coding error exponent for each error type.

Theorem 2. The random-coding error probabilities for the constant-composition ensemble in (47) satisfy

pe,1(n, enR1)
.
= exp

(
− nEcc

r,1(Q, R1)
)

(52)

pe,2(n, enR2)
.
= exp

(
− nEcc

r,2(Q, R2)
)

(53)

pe,12(n, enR1 , enR2)
.
= exp

(
− nEcc

r,12(Q, R1, R2)
)
, (54)
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where

Ecc
r,1(Q, R1) , min

PX1X2Y
∈Scc(Q)

min
P̃X1X2Y

∈T cc
1 (PX1X2Y

)
D(PX1X2Y ‖Q1 ×Q2 ×W ) +

[
IP̃ (X1;X2, Y )−R1

]+
(55)

Ecc
r,2(Q, R2) , min

PX1X2Y
∈Scc(Q)

min
P̃X1X2Y

∈T cc
2 (PX1X2Y

)
D(PX1X2Y ‖Q1 ×Q2 ×W ) +

[
IP̃ (X2;X1, Y )−R2

]+
(56)

Ecc
r,12(Q, R1, R2) , min

PX1X2Y
∈Scc(Q)

min
P̃X1X2Y

∈T cc
12 (PX1X2Y

)
D(PX1X2Y ‖Q1 ×Q2 ×W ) (57)

+
[

max
{
IP̃ (X1;Y )−R1, IP̃ (X2;Y )−R2, D

(
P̃X1X2Y ‖Q1 ×Q2 × P̃Y

)
−R1 −R2

}]+
.

(58)

Proof: The random-coding error probabilities pe,1 and pe,2 can be handled similarly to the single-user setting [8].
Furthermore, equivalent error exponents to (55)–(56) are given in [20]. We therefore focus on pe,12, which requires a
more refined analysis. We first write

pe,12 = c12E

[
P

[ ⋃
i 6=1,j 6=1

{
qn(X

(i)
1 ,X

(j)
2 ,Y )

qn(X1,X2,Y )
≥ 1

}∣∣∣∣X1,X2,Y

]]
(59)

for some c12 ∈ [ 12 , 1]. Setting c12 = 1 yields the average probability of error when ties are decoded as errors, and we
have c12 ≥ 1

2 since decoding ties at random reduces the error probability by at most a factor of two [26].
We will rewrite (59) in terms of the possible joint types of (X1,X2,Y ) and (X

(i)
1 ,X

(j)
2 ,Y ). To this end, we

define

Sccn (Qn) ,
{
PX1X2Y ∈ Pn(X1 ×X2 × Y) : PX1

= Q1,n, PX2
= Q2,n

}
(60)

T cc
12,n(PX1X2Y ) , T cc

12 (PX1X2Y ) ∩ Pn(X1 ×X2 × Y). (61)

Roughly speaking, Sccn is the set of possible joint types of (X1,X2,Y ), and T cc
12,n(PX1X2Y ) is the set of types of

(X
(i)
1 ,X

(j)
2 ,Y ) which lead to decoding errors when (X1,X2,Y ) ∈ Tn(PX1X2Y ). The constraints on PXν and P̃Xν

arise from the fact that we are using constant-composition random coding, and the constraint EP̃ [log q(X1, X2, Y )] ≥
EP [log q(X1, X2, Y )] holds if and only if qn(x1,x2,y) ≥ qn(x1,x2,y) for (x1,x2,y) ∈ Tn(PX1X2Y ) and (x1,x2,y) ∈
Tn(P̃X1X2Y ).

Fixing PX1X2Y ∈ Sccn (Qn) and letting (x1,x2,y) be an arbitrary triplet of sequences such that (x1,x2,y) ∈
Tn(PX1X2Y ), it follows that the event ⋃

i6=1,j 6=1

{
qn(X

(i)
1 ,X

(j)
2 ,y)

qn(x1,x2,y)
≥ 1

}
(62)

can be written as ⋃
i 6=1,j 6=1

⋃
P̃X1X2Y

∈T cc
12,n(PX1X2Y

)

{
(X

(i)
1 ,X

(j)
2 ,y) ∈ Tn(P̃X1X2Y )

}
. (63)

Expanding the probability and expectation in (59) in terms of types, substituting (63), and interchanging the order of
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the unions, we obtain

pe,12 = c12 ×
∑

PX1X2Y
∈Scc

n (Qn)

P
[
(X1,X2,Y ) ∈ Tn(PX1X2Y )

]
× P

[ ⋃
P̃X1X2Y

∈T cc
12,n(PX1X2Y

)

⋃
i 6=1,j 6=1

{
(X

(i)
1 ,X

(j)
2 ,y) ∈ Tn(P̃X1X2Y )

}]
(64)

.
= max
PX1X2Y

∈Scc
n (Qn)

P
[
(X1,X2,Y ) ∈ Tn(PX1X2Y )

]
× max
P̃X1X2Y

∈T cc
12,n(PX1X2Y

)
P

[ ⋃
i 6=1,j 6=1

{
(X

(i)
1 ,X

(j)
2 ,y) ∈ Tn(P̃X1X2Y )

}]
, (65)

where y is an arbitrary element of Tn(PY ), and (65) follows from the union bound and since the number of joint
types is polynomial in n.

The exponential behavior of the first probability in (65) is given by the property of types in (A.9), so it only
remains to determine the exponential behavior of the second probability. To this end, we make use of Lemma 3 with
Z1(i) = X

(i)
1 , Z2(j) = X

(j)
2 , A = Tny (P̃X1X2Y ), A1 = Tny (P̃X1Y ) and A2 = Tny (P̃X2Y ). Using (22)–(23) and the

properties of types in (A.10) and (A.11), it follows that the second probability in (65) has an exponent of[
max

{
IP̃ (X1;Y )−R1, IP̃ (X2;Y )−R2, D

(
P̃X1X2Y ‖Q1 ×Q2 × P̃Y

)
−R1 −R2

}]+
. (66)

Substituting (66) and the property of types in (A.9) into (65), and using a continuity argument (e.g. see [27, Eq. (30)])
to replace the sets Sccn and T cc

12,n by Scc and T cc
12 respectively, we recover the exponent in (58).

Due to the lack of converse results in mismatched decoding, it is important to determine whether the weakness in the
achievability results is due to the ensemble itself, or the bounding techniques used in the analysis. Theorem 2 shows
that the overall error exponent

Ecc
r (Q, R1, R2) , min

{
Ecc
r,1(Q, R1), Ecc

r,2(Q, R2), Ecc
r,12(Q, R1, R2)

}
(67)

is not only achievable, but it is also tight with respect to the ensemble average.
The proof of Theorem 2 made use of the refined union bound given in Lemma 3. If we had instead used the standard

truncated union bound in (11), we would have obtained exponent

Ecc′

r,12(Q, R1, R2) , min
PX1X2Y

∈Scc(Q)
min

P̃X1X2Y
∈T cc

12 (PX1X2Y
)

D(PX1X2Y ‖Q1 ×Q2 ×W ) +
[
D(P̃X1X2Y ‖Q1 ×Q2 × P̃Y )− (R1 +R2)

]+
, (68)

which coincides with an achievable exponent given in [20]. Following the analysis of [8], one can easily show that
this is the exponent of the quantity rcu′12 defined in (46).

In the case that there are K > 2 users, one can use Lemma 4 in place of Lemma 3. For example, for the joint error
event between all K users, the minimum of four terms in (58) is replaced by a minimum of 2K terms, corresponding
to the subsets of {1, · · · ,K}

2) Achievable Rate Region: The following achievable rate region follows from Theorem 2 in a straightforward
fashion, and coincides with the ensemble-tight achievable rate region of Lapidoth [6].

Theorem 3. The overall error exponent Ecc
r (Q, R1, R2) is positive for all rate pairs (R1, R2) in the interior of
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RLM(Q), where RLM(Q) is the set of all rate pairs (R1, R2) satisfying

R1 ≤ min
P̃X1X2Y

∈T cc
1 (Q1×Q2×W )

IP̃ (X1;X2, Y ) (69)

R2 ≤ min
P̃X1X2Y

∈T cc
2 (Q1×Q2×W )

IP̃ (X2;X1, Y ) (70)

R1 +R2 ≤ min
P̃X1X2Y

∈T cc
12 (Q1×Q2×W )

IP̃ (X1;Y )≤R1, IP̃ (X2;Y )≤R2

D(P̃X1X2Y ‖Q1 ×Q2 × P̃Y ). (71)

Proof: The conditions in (69)–(71) are obtained from the error exponents in (55)–(58) respectively. Focusing on
(71), we see that the objective in (58) is always positive when D(PX1X2Y ‖Q1 ×Q2 ×W ) > 0, IP̃ (X1;Y ) > R1 or
IP̃ (X2;Y ) > R2. Thus, by taking D(PX1X2Y ‖Q1 ×Q2 ×W )→ 0 and introducing the constraints IP̃ (X1;Y ) ≤ R1

and IP̃ (X2;Y ) ≤ R2, we obtain the condition in (71).
Using the usual time-sharing argument [6], [28] (see also Section III-E), it follows from Theorem 3 that we can

achieve any rate pair in the convex hull of
⋃

QRLM(Q), where the union is over all distributions Q1 and Q2 on X1

and X2 respectively.
The ensemble tightness of the rate region given in Theorem 3 does not follow directly from the fact that the exponents

in Theorem 2 are ensemble tight, since in principle the random-coding error probability could vanish subexponentially
at higher rates. However, the lower bounding techniques used in Theorem 2 can be adapted to prove the tightness of
the rate region (e.g. see Section V-A). We omit the analysis here, since the ensemble tightness of the rate region is
well-known [6].

Using a similar argument to the proof of Theorem 3, we see that (68) yields the rate condition

R1 +R2 ≤ min
P̃X1X2Y

∈T cc
12 (Q1×Q2×W )

D(P̃X1X2Y ‖Q1 ×Q2 × P̃Y ). (72)

In the following subsection, we compare the ensemble-tight expressions in (58) and (71) with the weaker expressions
in (68) and (72).

3) Numerical Examples: We now return to the parallel BSC example given in Figure 1, where the output is given
by y = (y1, y2). As mentioned in Section I-C, the decoder assumes that both crossover probabilities are equal. It is
straightforward to show that the corresponding decoding rule is equivalent to minimizing sum of t1 and t2, where tν
is the number of bit flips from the input sequence xν to the output sequence yν . As noted in [6], this decision rule
is in fact equivalent to ML. This channel could easily be analyzed by treating the two subchannels separately, but we
treat it as a MAC because it serves as a good example for comparing the ensemble-tight achievability results with (68)
and (72).

We let both Q1 and Q2 be the equiprobable distribution on {0, 1}. With this choice, it was shown in [6] that the
right-hand side of (72) is no greater than

2

(
1−H2

(
δ1 + δ2

2

))
bits/use. (73)

On the other hand, the refined condition in (71) can be used to prove the achievability of any (R1, R2) within the
rectangle with corners (0, 0) and (C1, C2), where Cν , 1−H2(δν) [6]. This observation is analogous to the comparison
between (8) and (9) in the introduction. The main difference is that the weakness in (8) is in the random-coding ensemble
itself, whereas the weakness in (73) is in the bounding techniques used in the analysis.

We evaluate the error exponents using the optimization software YALMIP [29]. Figure 2 plots each of the exponents
as a function of α, where the rate pairs are given by (R1, R2) = (αC1, αC2). While the overall error exponent
Er(Q, R1, R2) in (67) is unchanged at low to moderate values of α when Ecc′

r,12 is used in place of Er,12, this is not
true for high values of α. Furthermore, consistent with the preceding discussion, Ecc′

r,12 is non-zero only for α < 0.865,
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Figure 2. Error exponents Ecc
r,1 (dotted), Ecc

r,2 (dash-dot), Ecc
r,12 (solid) and Ecc′

r,12 (dashed) for the parallel channel shown in Figure 1 using
δ1 = 0.05, δ2 = 0.25 and equiprobable input distributions on {0, 1}.
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Figure 3. Achievable rate region for the MAC associated with (74) using the corresponding decoding metric in which all values of δ are equal.
The crossover probabilities are δ0 = 0.02, δ1 = 0.2, δ2 = 0.025 and δ3 = 0.25, and both input distributions are equiprobable on {0, 1}. The
ensemble-tight region is given in Theorem 3, whereas the naive union bound replaces (71) with (72).

whereas Ecc
r,12 is positive for all α < 1. It is interesting to note that the curves Ecc

r,12 and Ecc′

r,12 coincide at low values
of α. This is consistent with [20, Cor. 5], which states that Ecc′

r,12 is ensemble-tight at low rates.
Next, we show that the achievable rate regionRLM(Q) can be non-convex even for a given pair (Q1, Q2). We consider

the following example, with X1 = X2 = {0, 1} and Y = {0, 1, 2, 3}. The channel is described by W (y|x1, x2) =

W ′(y|2x1 + x2), where W ′(y|x) is defined by the entries of the matrix

W ′ =


1− 3δ0 δ0 δ0 δ0

δ1 1− 3δ1 δ1 δ1

δ2 δ2 1− 3δ2 δ2

δ3 δ3 δ3 1− 3δ3

 . (74)

The decoding metric is defined similarly, but with each δi replaced by a single value δ ∈ (0, 0.25) (all such choices of
δ are equivalent).

Figure 3 plots the achievable rate region RLM(Q) with δ0 = 0.02, δ1 = 0.2, δ2 = 0.025, δ3 = 0.25, and
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Q1 = Q2 = (0.5, 0.5). The boundary between the horizontal and vertical limits is not a straight line, but instead
a convex curve. To gain some insight as to how this behavior arises, we discuss the condition (71). In this example, the
constraint IP̃ (X2;Y ) ≤ R2 is inactive, whereas the constraint IP̃ (X1;Y ) ≤ R1 affects the region. As R1 increases,
the constraint is satisfied by a wider range of distributions P̃X1X2Y , and the sum rate R1 +R2 decreases. The corner
point (0.2687,0.2392) is the same whether the ensemble-tight bound or the weakened bound is used, indicating that
the constraint IP̃ (X1;Y ) ≤ R1 is also inactive at this point. However, at lower values of R1, the constraint is active,
and the ensemble-tight bound is better. In particular, the upper corner point (0.1412,0.3944) improves on that of
(0.1136,0.3944), which corresponds to the weaker rate condition in (72).

4) Alternative Expressions for the Error Exponents and Rates: In this subsection, we derive equivalent dual expres-
sions for the exponents and rates given in Theorems 2 and 3. The proofs are a non-trivial extension of the single-user
setting [4], and are made possible by Lemmas 5 and 6. In Section III-C, we will show that these dual expressions
generalize to continuous alphabets, analogously to the single-user setting [7], [8].

Lemma 7. The exponent Ecc
r,12 in (58) can be expressed as

Ecc
r,12(Q, R1, R2) = max

{
Ecc
r,12,1(Q, R1, R2), Ecc

r,12,2(Q, R1, R2)
}
, (75)

where

Ecc
r,12,1(Q, R1, R2) , min

PX1X2Y
∈Scc(Q)

min
P̃X1X2Y

∈T cc
12 (PX1X2Y

)
D(PX1X2Y ‖Q1 ×Q2 ×W )

+
[

max
{
IP̃ (X1;Y )−R1, D

(
P̃X1X2Y ‖Q1 ×Q2 × P̃Y

)
−R1 −R2

}]+
(76)

Ecc
r,12,2(Q, R1, R2) , min

PX1X2Y
∈Scc(Q)

min
P̃X1X2Y

∈T cc
12 (PX1X2Y

)
D(PX1X2Y ‖Q1 ×Q2 ×W )

+
[

max
{
IP̃ (X2;Y )−R2, D

(
P̃X1X2Y ‖Q1 ×Q2 × P̃Y

)
−R1 −R2

}]+
. (77)

Proof: This is a special case of Lemma 6 with the following identifications:

f(z) = D(PX1X2Y ‖Q1 ×Q2 ×W ) (78)

g(z) = D
(
P̃X1X2Y ‖Q1 ×Q2 × P̃Y

)
−R1 −R2 (79)

g1(z) = IP̃ (X1;Y )−R1 (80)

g2(z) = IP̃ (X2;Y )−R2. (81)

From the latter three choices and the identity

D
(
P̃X1X2Y ‖Q1 ×Q2 × P̃Y

)
= IP̃ (X1;Y ) + IP̃ (X2;Y ) + IP̃ (X1;X2|Y ), (82)

we see that the condition in (31) is satisfied.
The exponents in (76)–(77) are precisely those that would have been obtained by applying properties of types directly

to the RCU bounds in (42)–(43), rather than directly analyzing the random-coding error probability as in the proof of
Theorem 2. Thus, our RCU bounds yield the true error exponent for the constant-composition ensemble.

Lemma 8. The achievable rate region in Theorem 3 is unchanged if the condition that (71) holds is replaced by the
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condition that at least one of the following hold:

R1 +R2 ≤ min
P̃X1X2Y

∈T cc
12 (Q1×Q2×W )

IP̃ (X1;Y )≤R1

D(P̃X1X2Y ‖Q1 ×Q2 × P̃Y ) (83)

R1 +R2 ≤ min
P̃X1X2Y

∈T cc
12 (Q1×Q2×W )

IP̃ (X2;Y )≤R2

D(P̃X1X2Y ‖Q1 ×Q2 × P̃Y ). (84)

Proof: These conditions can be derived from (76)–(77) in an identical fashion to (71). Specifically, Ecc
r,12 is

positive whenever one of (76) and (77) hold, and zero otherwise. A similar statement holds for (71), and thus the two
formulations must be equivalent.

The conditions in (83)–(84) yield a notable advantage over the equivalent condition in (71) in terms of computation.
Based on (71), one may expect that the achievable rate region must be generated by evaluating the minimization over
a grid of (R1, R2) values. However, from (83)–(84), we can avoid such a computationally complex search by instead
evaluating the minimization in (83) over a range of R1 values, and the minimization in (84) over a range of R2 values.
Thus, the number of minimizations performed is reduced from O(N1N2) to O(N1 +N2), where for ν = 1, 2, Nν is
the number of points used in the quantization of the Rν axis.

The dual expressions for the error exponents in (55)–(56) and (76)–(77) are given in the following theorem.

Theorem 4. The exponents Ecc
r,1, Ecc

r,2, Ecc
r,12,1 and Ecc

r,12,2 can be expressed as

Ecc
r,1(Q, R1) = sup

ρ1∈[0,1]
Ecc

0,1(Q, ρ1)− ρ1R1 (85)

Ecc
r,2(Q, R2) = sup

ρ2∈[0,1]
Ecc

0,2(Q, ρ1)− ρ2R2 (86)

Ecc
r,12,1(Q, R1, R2) = sup

ρ1∈[0,1],ρ2∈[0,1]
Ecc

0,12,1(Q, ρ1, ρ2)− ρ1(R1 + ρ2R2) (87)

Ecc
r,12,2(Q, R1, R2) = sup

ρ1∈[0,1],ρ2∈[0,1]
Ecc

0,12,2(Q, ρ1, ρ2)− ρ2(R2 + ρ1R1), (88)

where

Ecc
0,1(Q, ρ1) , sup

s≥0,a1(·),a′1(·),a′2(·)
− logE

[(
E
[
q(X1, X2, Y )sea1(X1) |X2, Y

]
q(X1, X2, Y )sea1(X1)

)ρ1
e
∑2
ν=1 a

′
ν(Xν)−φ

′
ν

]
(89)

Ecc
0,2(Q, ρ2) , sup

s≥0,a2(·),a′1(·),a′2(·)
− logE

[(
E
[
q(X1, X2, Y )sea2(X2) |X1, Y

]
q(X1, X2, Y )sea2(X2)

)ρ1
e
∑2
ν=1 a

′
ν(Xν)−φ

′
ν

]
(90)

Ecc
0,12,1(Q, ρ1, ρ2) , sup

s≥0,a1(·),a2(·),a′1(·),a′2(·)

− logE

[(
E
[(

E
[
q(X1, X2, Y )sea2(X2) |X1

]
q(X1, X2, Y )sea2(X2)

)ρ2 ea1(X1)

ea1(X1)

∣∣∣∣X1, X2, Y

])ρ1
e
∑2
ν=1 a

′
ν(Xν)−φ

′
ν

]
(91)

Ecc
0,12,2(Q, ρ1, ρ2) , sup

s≥0,a1(·),a2(·),a′1(·),a′2(·)

− logE

[(
E
[(

E
[
q(X1, X2, Y )sea1(X1) |X2

]
q(X1, X2, Y )sea1(X1)

)ρ1 ea2(X2)

ea2(X2)

∣∣∣∣X1, X2, Y

])ρ2
e
∑2
ν=1 a

′
ν(Xν)−φ

′
ν

]
, (92)

and where (X1, X2, Y,X1, X2) ∼ Q1(x1)Q2(x2)W (y|x1, x2)Q1(x1)Q2(x2) and φ′ν , EQν [a′ν(Xν)] (ν = 1, 2). Each

supremum over aν(·) and a′ν(·) is taken over all real-valued functions on Xν .
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Proof: Each expression follows from its counterpart in (55)–(56) and (76)–(77) using Lemma 5 and Fan’s minimax
theorem [30]; details are given in Appendix C.

The expressions in (87)–(88) contain two parameters ρ1 and ρ2, thus differing from the usual error exponents
containing a single value of ρ (e.g. [31, Ch. 5]). These two parameters correspond to the two min{1, ·} terms in the
RCU bounds (42)–(43). To our knowledge, the first exponents of this form were by Poltyrev [32] in the setting of
broadcast channels with degraded message sets.

The following dual expression for the achievable rate region follows from (85)–(92).

Theorem 5. The region RLM(Q) in (69)–(71) can be expressed as the set of rate pairs (R1, R2) satisfying

R1 ≤ sup
s≥0,a1(·)

E

[
log

q(X1, X2, Y )sea1(X1)

E
[
q(X1, X2, Y )sea1(X1) |X2, Y

]] (93)

R2 ≤ sup
s≥0,a2(·)

E

[
log

q(X1, X2, Y )sea2(X2)

E
[
q(X1, X2, Y )sea2(X2) |X1, Y

]] (94)

and at least one of

R1 ≤ sup
ρ2∈[0,1],s≥0,a1(·),a2(·)

E

log

(
q(X1, X2, Y )sea2(X2)

)ρ2
ea1(X1)

E
[(

E
[
q(X1, X2, Y )sea2(X2)

∣∣X1

])ρ2
ea1(X1)

∣∣Y ]
− ρ2R2 (95)

R2 ≤ sup
ρ1∈[0,1],s≥0,a1(·),a2(·)

E

log

(
q(X1, X2, Y )sea1(X1)

)ρ1
ea2(X2)

E
[(

E
[
q(X1, X2, Y )sea1(X1)

∣∣X2

])ρ1
ea2(X2)

∣∣Y ]
− ρ1R1 (96)

where (X1, X2, Y,X1, X2) ∼ Q1(x1)Q2(x2)W (y|x1, x2)Q1(x1)Q2(x2), and for ν = 1, 2, each supremum over aν(·)
is taken over all real-valued functions on Xν .

Proof: The conditions in (93)–(96) follow from (85)–(88) respectively using a similar argument to Gallager’s
single-user analysis [33]. For example, (95) follows from (87) by setting a′1(x1) = a′2(x2) = 0, fixing s, a1(·) and
a2(·), and taking the limit as ρ1 → 0. The equivalence to (69)–(71) follows by making use of the alternative conditions
in (83)–(84) and applying Lagrange duality techniques analogously to Theorem 4. For example, for showing the
equivalence of (83) and (95), the desired result follows from Steps 1–2 of the proof of Theorem 4 in Appendix C-A,
using Q1 ×Q2 ×W in place of PX1X2Y .

C. Exponents and Rates for General Alphabets

In this section, we show that the expressions given in Theorems 4 and 5 remain valid for the memoryless MAC with
general alphabets. We make use of the cost-constrained ensemble [8], [15], [31], defined as follows. We fix Q1 ∈ P(X1)

and Q2 ∈ P(X1) and choose

PXν
(xν) =

1

µν,n

n∏
i=1

Qν(xν,i)11
{
xν ∈ Dν,n

}
, (97)

where for ν = 1, 2, µν,n is a normalizing constant, and

Dν,n ,

{
xν :

∣∣∣∣∣ 1n
n∑
i=1

aν,l(xν,i)− φν,l
∣∣∣∣∣ ≤ δ

n
, l = 1, . . . , Lν

}
(98)

φν,l , EQν [aν,l(Xν)] , (99)

where {aν,l}Lνl=1 are cost functions, and δ is a positive constant. Thus, the codewords for user ν are constrained to
satisfy Lν cost constraints in which the empirical average of aν,l(·) is close to the true mean. We allow each of the
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parameters to be optimized, including the cost functions. In principle, δ could vary with l, ν and n, but a fixed value
will suffice for our purposes. By choosing L1 = L2 = 0, we recover the i.i.d. ensemble studied in [17].

The cost-constrained ensemble has primarily been used with Lν = 1 [15], [31], but the inclusion of multiple cost
functions has proven beneficial in the mismatched single-user setting [8], [34]. In this section, we will see that the
use of multiple costs is beneficial for both the matched and mismatched MAC. It should be noted that the costs are
not being introduced to meet system constraints (e.g. power limitations), but instead to improve the performance of
the random-coding ensemble itself. Thus, the costs can be thought of as auxiliary costs rather than system costs. The
latter can easily be handled similarly to the former (e.g. see [8, Sec. VII], [34]), but in this paper we assume that the
channel is unconstrained.

The following proposition from [8] will be useful.

Proposition 1. [8, Prop. 1] For ν = 1, 2, fix Lν and the cost functions {aν,l}Lνl=1. Then µν,n = Ω(n−Lν/2) provided

that the second moment of aν,l(Xν) is finite under Xν ∼ Qν for l = 1, . . . , Lν .

We begin with the following generalization of Theorem 4.

Theorem 6. For any memoryless MAC, the error exponents in (85)–(92) are achievable, where each supremum is

subject to the constraints EQν [aν(Xν)2] <∞ and EQν [a′ν(Xν)2] <∞ (ν = 1, 2). Furthermore, these exponents can

be achieved using the cost-constrained ensemble with L1 = L2 = 5.

Proof: The proof is similar for each exponent, so we focus on Er,12,1. We define Qnν (xν) ,
∏n
i=1Qν(xν,i) for

ν = 1, 2. Expanding (42) and applying Markov’s inequality and min{1, α} ≤ αρ (0 ≤ ρ ≤ 1), we obtain1

rcu12,1(n,M1)

≤
∑

x1,x2,y

PX1(x1)PX2(x2)Wn(y|x1,x2)

(
M1

∑
x1

PX1(x1)

(
M2

∑
x2
PX2

(x2)qn(x1,x2,y)s

qn(x1,x2,y)s

)ρ2)ρ1
(100)

for any ρ1 ∈ [0, 1], ρ2 ∈ [0, 1] and s ≥ 0. For ν = 1, 2, we let aν(x) and a′ν(x) be two of the five cost functions
in the ensemble, and we define anν (xν) ,

∑n
i=1 aν(xν,i), a′nν (xν) ,

∑n
i=1 a

′
ν(xν,i), φν , EQν [aν(Xν)] and φ′ν ,

EQν [a′ν(Xν)]. Using the bounds on the cost functions in (98), we obtain

rcu12,1(n,M1) ≤ e2δ(ρ1+ρ1ρ2+1)
∑

x1,x2,y

PX1(x1)PX2(x2)Wn(y|x1,x2)

(
M1

∑
x1

PX1
(x1)

×
(
M2

∑
x2
PX2(x2)qn(x1,x2,y)sea

n
2 (x2)

qn(x1,x2,y)sea
n
2 (x2)

)ρ2 ean1 (x1)

ea
n
1 (x1)

)ρ1
e
∑2
ν=1 a

′n
ν (xν)−nφν . (101)

We further upper bound (101) by substituting (97) and replacing the summations over Dν,n by summations over all
sequences on Xnν . Expanding the resulting terms (e.g. Wn(y|x1,x2)) as a product from 1 to n and taking the supremum
over (s, ρ1, ρ2) and the cost functions, we obtain a bound whose exponent is given by (87), with a prefactor of

e2δ(ρ1+ρ1ρ2+1)

µ1+ρ1
1,n µ1+ρ1ρ2

2,n

. (102)

From Proposition 1 and the assumptions on the second moments of the cost functions, this prefactor is subexponential
in n.

Dealing with the other three exponents in (85)–(92) similarly, we conclude that it suffices to choose L1 = L2 = 5.
To see this, one can simply count the number of occurrences of each aν(·) and a′ν(·) in (89)–(92). It suffices to let the
cost functions for E0,12,1 and E0,12,2 coincide, since the error exponent for the type-12 event is the maximum of the

1In the case of continuous alphabets, the summations should be replaced by integrals.
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two.
From Theorem 6, we immediately obtain the following generalization of Theorem 5.

Theorem 7. An achievable rate region for the memoryless MAC is given by RLM(Q) in (93)–(96), where each

supremum is subject to EQν [aν(Xν)2] < ∞ (ν = 1, 2). Furthermore, any point in the region can be achieved using

cost-constrained random coding with L1 = L2 = 3.

Proof: The proof of the first part is identical to that of Theorem 5. The sufficiency of L1 = L2 = 3 follows from
the fact that the functions a′1(·) and a′2(·) are set to zero in the proof of Theorem 5.

D. Application to the Matched MAC

In this section, we apply our results to the setting of ML decoding, where q(x1, x2, y) = W (y|x1, x2). As mentioned
in Section I-C, an exponent for the constant-composition ensemble was derived by Liu and Hughes [19], and was shown
to yield a strict improvement over Gallager’s exponent for the i.i.d. ensemble [17] even after the optimization of the
input distributions. This is in contrast to the single-user setting, where the two coincide after the optimization of the
input distribution [11].

1) Simplified Primal Expressions for the Exponents: We will show that, in contrast to the mismatched setting, the
overall error exponent Ecc

r given in (67) is unchanged when Ecc′

r,12 in (68) is used in place of Ecc
r,12. We begin with the

following proposition, which shows that the exponents (Ecc
r,1, E

cc
r,2, E

cc′

r,12) (see (55)–(56) and (68)) under ML decoding
coincide with those of Liu and Hughes in the absence of time-sharing [19].

Proposition 2. Under ML decoding (i.e. q(x1, x2, y) = W (y|x1, x2)), Ecc
r,1, Ecc

r,2 and Ecc′

r,12 can be expressed as

Ecc
r,1(Q, R1) = min

PX1X2Y
∈Scc(Q)

D(PX1X2Y ‖Q1 ×Q2 ×W ) +
[
IP (X1;X2, Y )−R1

]+
(103)

Ecc
r,2(Q, R2) = min

PX1X2Y
∈Scc(Q)

D(PX1X2Y ‖Q1 ×Q2 ×W ) +
[
IP (X2;X1, Y )−R2

]+
(104)

Ecc′

r,12(Q, R1, R2) = min
PX1X2Y

∈Scc(Q)
D(PX1X2Y ‖Q1 ×Q2 ×W ) +

[
D(PX1X2Y ‖Q1 ×Q2 × PY )− (R1 +R2)

]+
.

(105)

Proof: This proposition states that in the matched case, the minimizations over P̃X1X2Y in (55), (56) and (68) are
achieved by P̃X1X2Y = PX1X2Y . The proof is nearly identical to [11, Lemma 9] and is omitted.

The statement that Ecc
r,12 can be replaced by Ecc′

r,12 is formally given in the following theorem.

Theorem 8. Under ML decoding (i.e. q(x1, x2, y) = W (y|x1, x2)), we have for any input distributions (Q1, Q2) and

rates (R1, R2) that

min
{
Ecc
r,1(Q, R1), Ecc

r,2(Q, R2), Ecc
r,12(Q, R1, R2)

}
= min

{
Ecc
r,1(Q, R1), Ecc

r,2(Q, R2), Ecc′

r,12(Q, R1, R2)
}
. (106)

Proof: We know that Ecc
r,12 ≥ Ecc′

r,12 always holds, and hence the left-hand side of (106) is greater than or equal
to the right-hand side. It remains to show that the converse is also true. To this end, we will show that the converse
statement holds when Ecc

r,12 is replaced by a quantity which is greater than or equal to Ecc
r,12. From the definition of

T cc
12 (PX1X2Y ), P̃X1X2Y = PX1X2Y always satisfies the constraints of (58), and hence

Ecc
r,12(Q, R1, R2) ≤ F12(Q, R1, R2), (107)
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where

F12(Q, R1, R2) , min
PX1X2Y

∈Scc(Q)
D(PX1X2Y ‖Q1 ×Q2 ×W )

+
[

max
{
IP (X1;Y )−R1, IP (X2;Y )−R2, D

(
PX1X2Y ‖Q1 ×Q2 × PY

)
−R1 −R2

}]+
. (108)

We wish to show that

min
{
Ecc
r,1(Q, R1), Ecc

r,2(Q, R2), F12(Q, R1, R2)
}
≤ min

{
Ecc
r,1(Q, R1), Ecc

r,2(Q, R2), Ecc′

r,12(Q, R1, R2)
}
. (109)

It suffices to show that whenever F12 exceeds Ecc′

r,12, F12 also greater than or equal to either Ecc
r,1 or Ecc

r,2. Comparing
(105) and (108), the objective in (108) only exceeds that of (105) when the maximum in (108) is achieved by
IP (X1;Y )−R1 or IP (X2;Y )−R2. We show that the former implies F12 ≥ Ecc

r,1; it can similarly be shown that the
latter implies F12 ≥ Ecc

r,2. If IP (X1;Y )−R1 achieves the maximum, we have

IP (X1;Y )−R1 ≥ D
(
PX1X2Y ‖Q1 ×Q2 × PY

)
−R1 −R2. (110)

Using the identity
D
(
PX1X2Y ‖Q1 ×Q2 × PY

)
= IP (X1;Y ) + IP (X2;X1, Y ), (111)

we can equivalently write (110) as IP (X2;X1, Y ) ≤ R2. However, substituting any such PX1X2Y into (104) yields an
objective of D(PX1X2Y ‖Q1 ×Q2 ×W ), which cannot exceed the objective in (108). It follows that F12 ≥ Ecc

r,1.
While it is possible that Ecc

r,12 > Ecc′

r,12 under ML decoding, Theorem 8 shows that this never occurs in the region
where Er,12 achieves the minimum in (67). Thus, combining Theorem 8 and Theorem 2, we conclude that the exponent
given in [19] is the true exponent for the constant-composition ensemble under ML decoding. While we have only
proved this in the absence of time-sharing, the same holds true when time-sharing is used; see Section III-E for further
discussion.

2) Dual Expression for the Exponent: The following theorem gives dual expressions for the exponents of Liu and
Hughes [19] in a form closely resembling Gallager’s exponents for the i.i.d. ensemble [17].

Theorem 9. For any DM-MAC with ML decoding (i.e. q(x1, x2, y) = W (y|x1, x2)), the error exponents for constant-

composition random coding (103)–(105) can be expressed as

Ecc
r,1(Q, R1) = sup

ρ∈[0,1]
Ecc

0,1(Q, ρ)− ρR1 (112)

Ecc
r,2(Q, R2) = sup

ρ∈[0,1]
Ecc

0,2(Q, ρ)− ρR2 (113)

Ecc′

r,12(Q, R1, R2) = sup
ρ∈[0,1]

Ecc′

0,12(Q, ρ)− ρ(R1 +R2), (114)

where

Ecc
0,1(Q, ρ) = sup

a1(·),a2(·)
− log

∑
x2,y

Q2(x2)

(∑
x1

Q1(x1)W (y|x1, x2)
1

1+ρ e
∑2
ν=1 aν(xν)−φν

)1+ρ

(115)

Ecc
0,2(Q, ρ) = sup

a1(·),a2(·)
− log

∑
x1,y

Q1(x1)

(∑
x2

Q2(x2)W (y|x1, x2)
1

1+ρ e
∑2
ν=1 aν(xν)−φν

)1+ρ

(116)

Ecc′

0,12(Q, ρ) = sup
a1(·),a2(·)

− log
∑
y

( ∑
x1,x2

Q1(x1)Q2(x2)W (y|x1, x2)
1

1+ρ e
∑2
ν=1 aν(xν)−φν

)1+ρ

. (117)

Furthermore, these exponents are achievable in the case of general alphabets using the cost-constrained ensemble with

L1 = L2 = 3, provided that each supremum is restricted to cost functions aν(Xν) whose second moment is finite



22

under Xν ∼ Qν .

Proof: By definition, Ecc′

r,12 can be obtained from either of (76)–(77) by removing the first term in the max{·, ·}.
From the proof of Theorem 4, we conclude that the analogous statement in the dual expressions (85)–(92) is that the
supremum over ρ2 in (91) (respectively, (92)) is replaced by ρ2 = 1 (respectively, ρ1 = 1). With these substitutions,
(91) and (92) become equal. Thus, it suffices to show that (89)–(91) coincide with (115)–(117) under ML decoding.
We focus on (91) and (117), since the others are handled similarly.

Setting ρ2 = 1 in (91) and renaming ρ1 as ρ, we obtain the E0 function

Ecc′′

0,12(Q, ρ) , − log
∑

x1,x2,y

Q1(x1)Q2(x2)W (y|x1, x2)

×
(∑

x1,x2
Q1(x1)Q2(x2)W (y|x1, x2)se

∑2
ν=1 aν(xν)−φν

W (y|x1, x2)se
∑2
ν=1 aν(xν)−φν

)ρ
e
∑2
ν=1 a

′
ν(xν)−φ

′
ν

(118)

= − log
∑
y

( ∑
x1,x2

Q1(x1)Q2(x2)W (y|x1, x2)1−ρse
∑2
ν=1 a

′
ν(xν)−φ

′
ν−ρ(aν(xν)−φν)

)
×
( ∑
x1,x2

Q1(x1)Q2(x2)W (y|x1, x2)se
∑2
ν=1 aν(xν)−φν

)ρ
, (119)

where in (118) we multiplied the numerator and denominator of the fraction by e−(φ1+φ2), where φν , EQν [aν(Xν)].
Using Hölder’s inequality similarly to [31, Ex. 5.6], we can lower bound the argument to the logarithm in (119) by∑

y

( ∑
x1,x2

Q1(x1)Q2(x2)W (y|x1, x2)
1

1+ρ e
∑2
ν=1 aν(xν)−φν

)1+ρ

. (120)

Furthermore, using the sufficient condition for equality in [31, Ex. 5.6], we conclude that this lower bound can be
achieved by choosing s = 1

1+ρ and a′ν(xν) = (1 + ρ)aν(xν). By handling the other E0 functions similarly, we obtain
the first part of the theorem. For the second part, it only remains to show that the choice L1 = L2 = 3 suffices. This
is seen by noting that whenever two cost functions are scalar multiples of each other (in this case, aν(·) and a′ν(·))
one of them can be removed without affecting the exponent obtained.

It is possible to derive Theorem 9 more directly, without using the mismatched decoding results of the previous
sections; see [35, Sec. V] for details. Gallager’s exponents [17] are obtained by setting a1(·) = a2(·) = 0 in (115)–(117).

E. Time-Sharing

In this subsection, we discuss the concept of time-sharing for the MAC. We begin with a brief overview of time-
sharing for the matched MAC, which is included in order to elucidate the subtle issues which arise in the mismatched
setting.

1) Matched Setting: For any pair of input distributions (Q1, Q2), the achievable rate region for ML decoding is
pentagonal and therefore convex. However, the region obtained by taking the union over all (Q1, Q2) is non-convex
in general. To obtain the remainder of the capacity region, one can use the standard time-sharing argument in which
one pair of codebooks is used for λn symbols of the block, and another pair of codebooks is used for the remaining
(1− λ)n symbols. We refer to this scheme as explicit time-sharing, or simply time-sharing.

A drawback of explicit time-sharing is that the corresponding error exponents can be low. If E(1)
r is the exponent

for some rate pair (R
(1)
1 , R

(1)
2 ) and E(2)

r is the exponent for another rate pair (R
(2)
1 , R

(2)
2 ), then the resulting exponent

for the weighted rate pair
Rν = λR(1)

ν + (1− λ)R(2)
ν , ν = 1, 2 (121)
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is given by
Er(R1, R2) = min

{
λE(1)

r (R
(1)
1 , R

(1)
2 ), (1− λ)E(2)

r (R
(2)
1 , R

(2)
2 )
}
, (122)

which may be particularly low if λ is close to zero or one. Nevertheless, we have Er(R1, R2) > 0 provided that
E

(1)
r > 0, E(2)

r > 0 and λ ∈ (0, 1).
Higher error exponents can be obtained by considering the coded time-sharing ensemble [28], which directly achieves

any point in the capacity region. Each codeword is generated conditionally on a (possibly random) time-sharing sequence
U in Un, where U is a finite time-sharing alphabet. For example, one may consider conditional i.i.d. random coding
of the form

PXν |U (xν |u) =

n∏
i=1

Qν(xν,i|ui), (123)

where Q1 and Q2 are (conditional) input distributions. Let E(u)
0 denote the E0 function (e.g. see (115)–(117)) for some

error type under i.i.d. random coding on Q1(·|u). Using coded time-sharing with U = {1, 2}, QU = (λ, 1 − λ), and
U equal to a deterministic sequence with type close to QU , we obtain the E0 function [17]

E0 = λE
(1)
0 + (1− λ)E

(2)
0 . (124)

In contrast to explicit time-sharing, we see that the exponent does not tend to zero as λ approaches zero or one.
Similar improvements apply for the constant-composition ensemble and cost-constrained ensemble. For the former,

we let Qν,n be the closest conditional type to Qν for ν = 1, 2, and write

PXν |U (xν |u) =
1

|Tu(Qν,n)|11
{
xν ∈ Tu(Qν,n)

}
, (125)

The cost-constrained ensemble is described by

PXν |U (xν |u) =
1

µν,n

n∏
i=1

Qν(xν,i|ui)11
{
xν ∈ Dν,n

}
, (126)

where

Dν,n ,

{
xν :

∣∣∣∣∣
n∑
i=1

aν,l(ui, xν,i)− φν,l
∣∣∣∣∣ ≤ δ

n
, l = 1, . . . , Lν

}
(127)

and where each quantity is defined similarly to (98)–(99) (e.g. φν,l , EQU×Qν
[
aν,l(U,Xν)

]
).

2) Mismatched Setting: Under mismatched decoding, explicit time-sharing behaves similarly to the matched setting.
For time-sharing between two achievable pairs (R

(1)
1 , R

(1)
2 ) and (R

(2)
1 , R

(2)
2 ) with exponents E(1)

r and E
(2)
r , one can

achieve the rate pair described by (121), with the exponent given by (122).
It may seem reasonable to conjecture that one can use coded time-sharing with |U| = 2 to prove the achievability of

any point on the line segment between two achievable points (R
(1)
1 , R

(1)
2 ) and (R

(2)
1 , R

(2)
2 ). However, in the mismatched

setting, this is not true in general. Before showing this, we outline some of the results when coded time-sharing is used.
Since the changes compared to the case U = ∅ are similar for each error type, we focus on the type-12 quantities.

For general conditional codeword distributions PXν |U with a (possibly random) time-sharing sequence U ∼ PU ,
the RCU bounds in (40)–(43) should be modified so that outer expectation is over (U ,X1,X2,Y ). For each of the
ensembles in (125)–(126), we let U be a deterministic sequence u ∈ Tn(QU,n), where QU,n is the most likely type
under QU . Following the analysis of Section III-B1, the analogous exponent to Ecc

r,12 in (58) is given by

Ecc-ts
r,12(Q, R1, R2) , min

PUX1X2Y
∈Scc-ts(Q)

min
P̃X1X2Y

∈T cc-ts
12 (PUX1X2Y

)
D(PUX1X2Y ‖QU ×Q1 ×Q2 ×W )

+
[

max
{
IP̃ (X1;Y |U)−R1, IP̃ (X2;Y |U)−R2, D

(
P̃UX1X2Y ‖QU ×Q1 ×Q2 × P̃Y

)
−R1 −R2

}]+
, (128)
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where
Scc-ts(Q) ,

{
PUX1X2Y ∈ P(U × X1 ×X2 × Y) : PU = QU , PX1|U = Q1, PX2|U = Q2

}
(129)

T cc-ts
12 (PUX1X2Y ) ,

{
P̃UX1X2Y ∈ P(U × X1 ×X2,Y) :

P̃X1|U = PX1|U , P̃X2|U = PX2|U , P̃UY = PUY ,EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )]

}
. (130)

In the dual domain, the analogous quantity to Ecc
0,12,1 in (91) is given by

Ecc-ts
0,12,1(Q, ρ1, ρ2) , sup

s≥0,a1(·,·),a2(·,·),a′1(·,·),a′2(·,·)

−
∑
u

QU (u) logE

[(
E
[(

E
[
q(X1, X2, Y )sea2(u,X2) |X1

]
q(X1, X2, Y )sea2(u,X2)

)ρ2 ea1(u,X1)

ea1(u,X1)

∣∣∣∣X1, X2, Y

])ρ1
e
∑2
ν=1 a

′
ν(u,Xν)−φ

′
ν

]
,

(131)

where for each u, the expectations are taken with respect to the conditional distribution (X1, X2, Y,X1, X2 |U = u) ∼
Q1(x1|u)Q2(x2|u)W (y|x1, x2)Q1(x1|u)Q2(x2|u). Similarly, the rate condition corresponding to (71) is

R1 +R2 ≤ min
P̃UX1X2Y

∈T cc-ts
12 (QU×Q1×Q2×W )

IP̃ (X1;Y |U)≤R1, IP̃ (X2;Y |U)≤R2

D(P̃UX1X2Y ‖QU ×Q1 ×Q2 × P̃Y ), (132)

and the rate condition corresponding to (95) is

R1 ≤ sup
ρ2∈[0,1],s≥0,a1(·,·),a2(·,·)

E

log

(
q(X1, X2, Y )sea2(U,X2)

)ρ2
ea1(U,X1)

E
[(

E
[
q(X1, X2, Y )sea2(U,X2)

∣∣X1

])ρ2
ea1(U,X1)

∣∣Y ]
− ρ2R2, (133)

where U ∼ QU .
We now compare the above rate conditions with those obtained by explicit time-sharing, focusing on the case that
U = {1, 2}. We again write QU (1) = λ and QU (2) = 1 − λ, and we assume that the time-sharing is done using the
input distribution vectors Q(1) and Q(2) and the rate pairs (R

(1)
1 , R

(1)
2 ) and (R

(2)
1 , R

(2)
2 ). We make use of the quantities

R1 and R2 defined in (121).
We first consider the primal domain expressions. We have from (122) that under explicit time-sharing, the condition

corresponding to (71) is given by

R1 ≤ λ min
P̃X1X2Y

D(P̃X1X2Y ‖Q(1)
1 ×Q

(1)
2 × P̃Y ) + (1− λ) min

P̃X1X2Y

D(P̃X1X2Y ‖Q(2)
1 ×Q

(2)
2 × P̃Y ), (134)

where the minimizations are subject to constraints of the form in (71), the first using Q(1) and the second using Q(2).
By writing the first minimization variable in (134) as P̃X1X2Y |U=1 and the second as P̃X1X2Y |U=2, we can combine
these into a single minimization over P̃UX1X2Y , where P̃U = QU . The resulting rate condition has the same form as
(132), but with the constraint EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )] replaced by

EP̃ [log q(X1, X2, Y ) |U = u] ≥ EP [log q(X1, X2, Y ) |U = u], u = 1, 2, (135)

and each constraint IP̃ (Xν ;Y |U) ≤ Rν (ν = 1, 2) replaced by

IP̃ (Xν ;Y |U = u) ≤ R(u)
ν , u = 1, 2. (136)

It follows that the constraints on P̃UX1X2Y are stricter for explicit time-sharing than for coded time-sharing; the former
must hold for each value of u, while the latter only need to hold for the average over u with respect to QU . Since the
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minimization for the coded time-sharing ensemble is over a larger set, the resulting rate cannot be higher, and can in
fact be strictly lower.

A similar observation applies in the dual domain. Let us write I12(Q, s, ρ2) to denote (95) with fixed values of s
and ρ2 in place of the suprema. Using explicit time-sharing, the condition corresponding to (93) is given by

R1 ≤ λ sup
s≥0,ρ2∈[0,1]

I12(Q(1), s, ρ2) +
(
1− λ

)
sup

s≥0,ρ2∈[0,1]
I12(Q(2), s, ρ2), (137)

whereas from (133), coded time-sharing only permits

R1 ≤ sup
s≥0,ρ2∈[0,1]

(
λI12(Q(1), s, ρ2) +

(
1− λ

)
I12(Q(2), s, ρ2)

)
. (138)

In other words, the coded time-sharing ensemble only allows a single choice of (s, ρ2), whereas explicit time-sharing
allows (s, ρ2) to vary with u. An analogy to the above discussion regarding the primal expressions can be seen by
interpreting (s, ρ2) as Lagrange multipliers.

In summary, the achievable rate regions of the coded time-sharing ensembles can be strictly smaller than those of
explicit time-sharing in the mismatched setting, in contrast to the matched setting. However, from the above discussion
preceding (122), we expect coded time-sharing to yield higher error exponents for many channels and metrics, at least
for some rate pairs. It remains an open question as to whether the rate region of explicit time-sharing can be achieved
using a different approach which yields better exponents.

F. Application to Single-User Mismatched Channels

The parallel BSC example [6] given in Section I-C shows that the achievable rate region for the MAC can be used
to improve on the LM rate in the single-user setting. In [6, Thm. 4], Lapidoth showed that we can in fact do even
better by expurgating all codeword pairs except for those have a fixed joint type approximately equal to Q1×Q2. Such
expurgation is not possible for the mismatched MAC, since it requires cooperation between the users.

We state the achievable rate region of [6, Thm. 4] in the following theorem, making using of the sets

T cc-ex
ν (Q1 ×Q2 ×W ) , T cc

ν (Q1 ×Q2 ×W ) ∩
{
P̃X1X2Y : P̃X1X2

= Q1 ×Q2

}
(139)

for ν = 1, 2, 12, where the sets T cc
ν are defined in (49)–(51).

Theorem 10. [6, Thm. 4] Let the DMC W ′(y|x) and metric q′(x, y) be given, and let W (y|x1, x2) = W ′(y|ψ(x1, x2))

and q(x1, x2, y) = q′(ψ(x1, x2), y) for some finite alphabets X1, X2 and function ψ : X1 × X2 → X . An achievable

rate for W ′ with the metric q′ is given by R = R1 +R2 for any (R1, R2) satisfying

R1 ≤ min
P̃X1X2Y

∈T cc-ex
1 (Q1×Q2×W )

IP̃ (X1;Y |X2) (140)

R2 ≤ min
P̃X1X2Y

∈T cc-ex
2 (Q1×Q2×W )

IP̃ (X2;Y |X1) (141)

R1 +R2 ≤ min
P̃X1X2Y

∈T cc-ex
12 (Q1×Q2×W )

IP̃ (X1;Y )≤R1, IP̃ (X2;Y )≤R2

IP̃ (X1, X2;Y ) (142)

for some Q1, Q2.

Analogously to Lemma 8, we have the following.

Lemma 9. The achievable rate region in Theorem 10 is unchanged if the condition that (142) holds is replaced by
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the condition that at least one of the following hold:

R1 +R2 ≤ min
P̃X1X2Y

∈T cc-ex
12 (Q1×Q2×W )

IP̃ (X1;Y )≤R1

IP̃ (X1, X2;Y ). (143)

R1 +R2 ≤ min
P̃X1X2Y

∈T cc-ex
12 (Q1×Q2×W )

IP̃ (X2;Y )≤R2

IP̃ (X1, X2;Y ). (144)

Proof: The condition in (142) can equivalently be written as

0 ≤ min
P̃X1X2Y

∈T cc-ex
12 (Q1×Q2×W )

max
{
IP̃ (X1;Y )−R1, IP̃ (X2;Y )−R2, IP̃ (X1, X2;Y )−R1 −R2

}
. (145)

The lemma follows by writing (143)–(144) in a similar form and applying Lemma 6, analogously to the proof of
Lemma 7.

The following theorem is analogous to Theorem 4, and can be proved similarly using Lagrange duality techniques.
The only significant difference in the derivation is the additional constraint P̃X1X2 = Q1×Q2 in each primal expression,
and the presence of joint functions a(x1, x2) in each dual expression rather than separate functions a1(x1) and a2(x2).
The proof is omitted to avoid repetition.

Theorem 11. Under the setup of Theorem 10, the pair (R1, R2) satisfies (140)–(142) if and only if it satisfies

R1 ≤ sup
s≥0,a(·,·)

E

[
log

q(X1, X2, Y )sea(X1,X2)

E
[
q(X1, X2, Y )sea(X1,X2) |X2, Y

]] (146)

R2 ≤ sup
s≥0,a(·,·)

E

[
log

q(X1, X2, Y )sea(X1,X2)

E
[
q(X1, X2, Y )sea(X1,X2) |X1, Y

]] (147)

and at least one of

R1 ≤ sup
ρ2∈[0,1],s≥0,a(·,·)

E

log

(
q(X1, X2, Y )sea(X1,X2)

)ρ2
E
[(

E
[
q(X1, X2, Y )sea(X1,X2)

∣∣X1

])ρ2 ∣∣Y ]
− ρ2R2 (148)

R2 ≤ sup
ρ1∈[0,1],s≥0,a(·,·)

E

log

(
q(X1, X2, Y )sea(X1,X2)

)ρ1
E
[(

E
[
q(X1, X2, Y )sea(X1,X2)

∣∣X2

])ρ1 ∣∣Y ]
− ρ1R1 (149)

where (X1, X2, Y,X1, X2) ∼ Q1(x1)Q2(x2)W (y|x1, x2)Q1(x1)Q2(x2).

It is possible to prove the achievability of R = R1 +R2 for (R1, R2) satisfying (146)–(149) directly, and to extend
the validity of the result to general alphabets. The main difference compared to [6, Thm. 4] is that instead of expurgating
all codewords except those of a given type, we expurgate all codewords which fail to meet a set of joint cost constraints
of the form ∣∣∣∣ 1n

n∑
i=1

al(x1,i, x2,i)− φl
∣∣∣∣ ≤ δn (150)

for some functions {al}Ll=1 and a sequence δn, where φl , EQ1×Q2
[al(X1, X2)].

We do not pursue the above approach further in this paper. Instead, we show in the following section that superposition
coding yields an achievable rate at least as high as that of Theorem 10 for any DMC. The superposition coding approach
extends more easily to general alphabets, without the need for expurgation. Furthermore, unlike the proof of Theorem
10 (see [6, Thm. 4]) or its variation outlined above, our analysis of superposition coding yields non-asymptotic bounds
and error exponents as intermediate steps.
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IV. SUPERPOSITION CODING

In this section, we study superposition coding (SC) [36]–[38] for the mismatched single-user channel introduced
in Section I-A1. The parameters of the ensemble are an auxiliary alphabet U , an auxiliary codeword distribution PU ,
and a conditional codeword distribution PX|U . We fix the rates R0 and R1. An auxiliary codebook {U (i)}M0

i=1 with
M0 , exp(R0) codewords is generated at random, with each auxiliary codeword independently distributed according
to PU . For each i = 1, · · · ,M0, a codebook {X(i,j)}M1

j=1 with M1 , exp(R1) codewords is generated at random, with
each codeword conditionally independently distributed according to PX|U . The message m at the input to the encoder
is indexed as (m0,m1), and for any such pair the corresponding transmitted codeword is X(m0,m1). Thus, the overall
number of messages is M = M1M2, yielding a rate of R = R1 +R2. More compactly, we have{(

U (i), {X(i,j)}M1
j=1

)}M0

i=1

∼
M0∏
i=1

(
PU (u(i))

M1∏
j=1

PX|U (x(i,j)|u(i))

)
. (151)

We assume without loss of generality that message (1, 1) is transmitted, and write U and X in place of U (1) and
X(1,1) respectively. We write X̃ to denote an arbitrary codeword X(1,j) with j 6= 1, and we write U and X to denote
arbitrary codewords U (i) and X(i,j) with i 6= 1. Thus, defining Y to be the channel output, we have

(U ,X,Y , X̃,U ,X) ∼ PU (u)PX|U (x|u)Wn(y|x)PX|U (x̃|u)PU (u)PX|U (x|u). (152)

The decoder forms an estimate m̂ = (m̂0, m̂1) according to (2). We distinguish between the following two types of
error:

(Type 0) m̂0 6= m0

(Type 1) m̂0 = m0 and m̂1 6= m1

The random-coding error probabilities for a given random-coding ensemble are denoted by pe,0(n,M0,M1) and
pe,1(n,M1) respectively. The overall random-coding error probability pe(n,M0,M1) thus satisfies

max{pe,0, pe,1} ≤ pe ≤ pe,0 + pe,1. (153)

The primal-domain exponents and rates in this section (Theorems 13 and 14 below) coincide with those obtained in
the independent work of Somekh-Baruch [9]. We thus omit their proofs, and focus our attention on results which are
being presented here for the first time.

A. Random-Coding Bounds

In Section III, we used Lemma 3 to obtain ensemble-tight error exponents for the mismatched MAC. Since the proof
used the method of types, the corresponding subexponential prefactors differ by a polynomial factor depending on the
alphabet sizes. For superposition coding, we can in fact obtain non-asymptotic upper and lower bounds which coincide
to within a constant factor.

Theorem 12. Under the random-coding distributions PU and PX|U , the ensemble-average error probabilities for the

maximum-metric decoder satisfy

1

8
rcu0(n,M0,M1) ≤ pe,0(n,M0,M1) ≤ rcu0(n,M0,M1), (154)

1

4
rcu1(n,M1) ≤ pe,1(n,M1) ≤ rcu1(n,M1) (155)
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where

rcu0(n,M0,M1) , E

[
min

{
1, (M0 − 1)E

[
min

{
1,M1P

[
qn(X,Y )

qn(X,Y )
≥ 1

∣∣∣∣U]} ∣∣∣∣U ,X,Y

]}]
. (156)

rcu1(n,M1) , E

[
min

{
1, (M1 − 1)P

[
qn(X̃,Y )

qn(X,Y )
≥ 1

∣∣∣∣U ,X,Y

]}]
(157)

Proof: Equation (155) follows using an identical argument to the single-user setting, where the RCU bound is
known to be ensemble-tight to within a factor of 1

4 [8]. We thus focus on (154). By upper bounding the error probability
by that of a decoder which decodes ties as errors, we obtain

pe,0 ≤ P
[ ⋃
i 6=1,j 6=1

{qn(X(i,j),Y )

qn(X,Y )
≥ 1
}]
. (158)

Writing the probability as an expectation given (U ,X,Y ) and applying the truncated union bound to the union over
i, we obtain

pe,0 ≤ E

[
min

{
1, (M0 − 1)P

[ ⋃
j 6=1

{qn(X
(j)
,Y )

qn(X,Y )
≥ 1
}]}]

. (159)

Applying the same argument to the union over j, we obtain the upper bound in (154). The matching lower bound
follows since breaking ties as errors increases the error probability by at most a factor of two [26], and since by
the construction of the ensemble, each truncated union bound was applied to independent events, thus guaranteeing
tightness to within a factor of 1

2 [23, Lemma A.2].

B. Exponents and Rates for DMCs

In this subsection, we assume that the channel is a DMC, and consider the constant-composition superposition coding
ensemble, which depends on a joint input distribution QUX ∈ P(U × X ). We let QUX,n be the most probable type
under QUX , and we denote the corresponding U marginal by QU,n and the corresponding distribution of X given U
by QX|U,n. The ensemble is characterized by

PU (u) =
1

|Tn(QU,n)|11
{
u ∈ Tn(QU,n)

}
(160)

PX|U (x|u) =
1

|Tnu (QX|U,n)|11
{
x ∈ Tnu (QX|U,n)

}
. (161)

We state the exponents and rates corresponding to the non-asymptotic bounds in Theorem 12 without proof, since the
proofs are similar to those given in Section III, and since equivalent exponents and rates in a slightly different form
have been given by Somekh-Baruch [9]. We define the sets

Scc(QUX) ,
{
PUXY ∈ P(U × X × Y) : PUX = QUX

}
(162)

T cc
0 (PUXY ) ,

{
P̃UXY ∈ P(U × X × Y) : P̃UX = PUX , P̃Y = PY , EP̃ [log q(X,Y )] ≥ EP [log q(X,Y )]

}
. (163)

T cc
1 (PUXY ) ,

{
P̃UXY ∈ P(U × X × Y) : P̃UX = PUX , P̃UY = PUY , EP̃ [log q(X,Y )] ≥ EP [log q(X,Y )]

}
(164)

Theorem 13. The random-coding error probabilities for the constant-composition superposition coding ensemble satisfy

pe,0(n, enR0 , enR1)
.
= exp

(
− nEcc

r,0(QUX , R0, R1)
)

(165)

pe,1(n, enR1)
.
= exp

(
− nEcc

r,1(QUX , R1)
)

(166)
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where

Ecc
r,0(QUX , R0, R1) , min

PUXY ∈Scc(QUX)
min

P̃UXY ∈T cc
0 (PUXY )

D(PUXY ‖QUX ×W ) +
[
IP̃ (U ;Y ) +

[
IP̃ (X;Y |U)−R1

]+ −R0

]+
(167)

Ecc
r,1(QUX , R1) , min

PUXY ∈Scc(QUX)
min

P̃UXY ∈T cc
1 (PUXY )

D(PUXY ‖QUX ×W ) +
[
IP̃ (X;Y |U)−R1

]+
(168)

The overall error exponent is given by

Ecc
r (QUX , R0, R1) , min

{
Ecc
r,0(QUX , R0, R1), Ecc

r,1(QUX , R1)
}

(169)

and is tight with respect to the ensemble average. Following the steps of Section III-D, it can be shown that in the
case of ML decoding (i.e. q(x, y) = W (y|x)) the overall exponent can be expressed as

Ecc
r (QUX , R0, R1) = min

{
Ecc′

r,0(QUX , R0, R1), Ecc
r,1(QUX , R1)

}
, (170)

where

Ecc′

r,0(QUX , R0, R1) , min
PUXY ∈Scc(QUX)

D(PUXY ‖QUX ×W ) + [IP (U,X;Y )−R0 −R1]+ (171)

Ecc
r,1(QUX , R1) = min

PUXY ∈Scc(QUX)
D(PUXY ‖QUX ×W ) + [IP (X;Y |U)−R1]+. (172)

This exponent coincides with the error exponent for the primary user of a broadcast channel with degraded message
sets given in [38]. Thus, the exponent given in [38] is tight with respect to the ensemble average for ML decoding.

Next, we provide the achievable rates resulting from Theorem 13.

Theorem 14. The overall error exponent Ecc
r (QUX , R0, R1) is positive for all rate pairs (R1, R2) in the interior of

RLM(QUX), where RLM(QUX) is the set of all rate pairs (R0, R1) satisfying

R1 ≤ min
P̃UXY ∈T cc

1 (QUX×W )
IP̃ (X;Y |U) (173)

R0 +R1 ≤ min
P̃UXY ∈T cc

0 (QUX×W )
IP̃ (U ;Y )≤R0

IP̃ (U,X;Y ). (174)

Proof: These expressions follow by taking PUX → QUX ×W in (167)–(168), and noting that the objective of
(167) is always positive when IP̃ (U ;Y ) > R0.

As discussed in Section III-B2, ensemble tightness of the exponent does not directly imply ensemble tightness of
the rate. In the present setting, the ensemble tightness of the rate follows via a straightforward extension of [6, Thm.
3] (see [9]). From the discussion following (169), we recover the rate conditions for the primary user of the broadcast
channel with degraded message sets [37] when q(x, y) = W (y|x).

The following theorem gives dual expressions for the rates. In the following subsection we will use cost-constrained
coding to show that these expressions remain valid in the case of continuous alphabets. Similar arguments can be
applied to the exponents, but we focus on rates the sake of brevity.

Theorem 15. The region RLM(QUX) in (173)–(174) can be expressed as the set of all rate pairs (R0, R1) satisfying

R1 ≤ sup
s≥0,a(·,·)

E

[
log

q(X,Y )sea(U,X)

E[q(X̃, Y )sea(U,X̃) |U, Y ]

]
(175)
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R0 ≤ sup
ρ1∈[0,1],s≥0,a(·,·)

E

log

(
q(X,Y )sea(U,X)

)ρ1
E
[(

E
[
q(X,Y )sea(U,X)

∣∣U])ρ1 ∣∣Y ]
− ρ1R1, (176)

where (U,X, Y, X̃, U,X) ∼ QUX(u, x)W (y|x)QX|U (x̃|u)QUX(u, x).

Proof: The proof is nearly identical to that of Theorem 5. Equation (175) follows from (173) analogously to
the steps in obtaining (93)–(94) from (69)–(70), and (176) follows from (174) analogously to the steps in obtaining
(95)–(96) from (83)–(84) (see the proof of Theorem 5 in Appendix C-A).

C. Comparison to the Expurgated MAC

The achievable rate of Theorem 14 (superposition coding) has a similar form to that of Theorem 10 (expurgated
parallel coding). The following proposition shows that the former can be weakened to the latter.

Proposition 3. After the optimization of U and QUX , the achievable rate Rsc = maxR0,R1
R0 + R1 described by

(173)–(174) is at least as high as the achievable rate Rmac = maxR1,R2
R1 + R2 described by (140)–(142) with

optimized parameters X1, X2, Q1, Q2 and ψ(·, ·).

Proof: We will make use of the equivalent type-12 conditions in (143)–(144) for the expurgated MAC. To avoid
ambiguity between overloaded symbols (e.g. R1), we use a superscript to specify the relevant ensemble for some
quantities (e.g. Rsc

1 , Rmac
1 ).

We will show that by identifying U sc = Xmac
1 , Rsc

1 = Rmac
1 and Rsc

0 = Rmac
2 , we can weaken (173) to (140) and

(174) to (144). A similar argument with U sc = Xmac
2 , Rsc

1 = Rmac
2 and Rsc

0 = Rmac
1 yields that we can weaken (173)

to (141) and (174) to (143). Combining these results, it follows that the achievability of the superposition coding rate
implies the achievability of any R = R1 +R2 such that (R1, R2) satisfy (140)–(141) and at least one of (143)–(144),
as desired.

The process of weakening (173) to (140) is similar to that of weakening (174) to (143), so we focus on the former.
Setting U sc = Xmac

1 , the optimization in (173) can be written as

min
P̃Y |X1X

∑
x1,x,y

QX1X(x1, x)P̃Y |X1X(y|x1, x) log
P̃Y |X1X(y|x1, x)∑

xQX|X1
(x|x1)W (y|x)

(177)

subject to the constraints ∑
x

QX1X(x1, x)P̃Y |X1X(y|x1, x) =
∑
x

QX1X(x1, x)W (y|x) (178)∑
x1,x,y

QX1X(x1, x)P̃Y |X1X(y|x1, x) log q(x, y) ≥
∑
x,y

QX(x)W (y|x) log q(x, y). (179)

Since QX1X can be chosen arbitrarily, we set

QX1X(x1, x) =
∑
x2

Q1(x1)Q2(x2)11{x = ψ(x1, x2)} (180)

for some Q1, Q2 and ψ(·, ·). Under this choice, the objective in (177) is given by∑
x1,x2,y

Q1(x1)Q2(x2)P̃Y |X1X(y|x1, ψ(x1, x2)) log
P̃Y |X1X(y|x1, ψ(x1, x2))∑
x2
Q2(x2)W (y|ψ(x1, x2))

, (181)

and the constraints in (178)–(179) are written similarly with ψ(x1, x2) playing the role of x. Since the objective and
constraints depend on P̃Y |X1X(y|x1, x) only through P̃Y |X1X(y|x1, ψ(x1, x2)), we can lower bound the minimization
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by instead taking it over all conditional distributions P̃Y |X1X2
. Thus, we recover the minimization

min
P̃Y |X1X2

∑
x1,x2,y

Q1(x1)Q2(x2)P̃Y |X1X2
(y|x1, x2) log

P̃Y |X1X2
(y|x1, x2)∑

x2
Q2(x2)W (y|ψ(x1, x2))

(182)

subject to the constraints∑
x2

Q1(x1)Q2(x2)P̃Y |X1X2
(y|x1, x2) =

∑
x2

Q1(x1)Q2(x2)W (y|ψ(x1, x2)) (183)

∑
x1,x2,y

Q1(x1)Q2(x2)P̃Y |X1X2
(y|x1, x2) log q(ψ(x1, x2), y)

≥
∑

x1,x2,y

Q1(x1)Q2(x2)W (y|ψ(x1, x2)) log q(ψ(x1, x2), y). (184)

Rewriting this minimization as a minimization over joint distributions P̃X1X2Y subject to P̃X1X2
= Q1 × Q2, we

recover the right-hand side of (140).
The result of Proposition 3 can be understood intuitively as follows. The condition in (173) corresponds to either

(69) or (70) (depending on the choice of parameters), and the condition in (174) corresponds to either (143) or (144).
The superposition coding rate only has two rate conditions (type-0 and type-1), whereas the expurgated MAC has three
(type-1, type-2 and type-12), thus allowing the former to be weakened to the latter. The sum rate condition in (71)
may appear to improve on that of (174) via the inclusion of two constraints of the form IP̃ (Xν ;Y ) ≤ Rν instead of
just one. However, from Lemma 9, at most one of these constraints is active for any given rate pair.

It may appear that the ability to choose QUX in (173)–(174) provides more freedom than the ability to choose Q1

and Q2 in (69)–(71). However, it is known that in the latter setting, any joint distribution of (X1, X) (or (X2, X))
can be induced by a suitable choice of ψ(·, ·) [28, p. 626]. This suggests (but does not prove) that the converse to
Proposition 3 holds true, i.e. that the two rates are equivalent after the full optimization of the parameters.

Regardless of whether the two rates are equivalent after the full optimization of the random-coding parameters, the SC
bound appears to be more amenable to local optimization techniques, since the optimization over (X1,X2, Q1, Q2, ψ)

is replaced by a seemingly simpler optimization over (U , QUX). The optimization of the input distribution is a non-
convex problem in general even for the single-user LM rate [7], and thus the ability to perform local optimizations is
of interest.

D. Rates for General Alphabets

The following theorem shows that the expressions in Theorem 15 remain valid in the setting of general alphabets.

Theorem 16. For an arbitrary memoryless channel W and auxiliary alphabet U , the rate R = R0 +R1 is achievable

for any (R0, R1) satisfying (175)–(176), where the supremum over a(·, ·) is taken over all functions such that the

second moment of a(U,X) is finite under (U,X) ∼ QUX .

The main step in proving Theorem 16 is proving the existence of a suitable cost-constrained ensemble parameterized
by an input distribution QUX and L cost functions {al(u, x)} (l = 1, · · · , L). We will present an ensemble of the form

PU (u) =
1

µ1,n

n∏
i=1

QU (ui)11{u ∈ D1} (185)

PX|U (x|u) =
1

µ2,n(u)

n∏
i=1

QX|U (xi|ui)11{x ∈ D2(u)} (186)

with D1 and D2(u) chosen such that (i) limn→∞
1
n logµ1,n = 0, (ii) limn→∞

1
n logµ2,n(u) = 0 for all u ∈ D1, and
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(iii) there exists constants {φl} and δ such that for each l = 1, · · · , L, we have
∣∣ 1
n

∑n
i=1 al(ui, xi) − φl

∣∣ ≤ δ
n . Once

this ensemble is established, the proof of Theorem 16 will follow using similar steps to Section III-C, starting with
the RCU bounds given in Theorem 12. These remaining details are omitted to avoid repetition.

The ensemble presented here is a straightforward generalization of that used in [39] for a Gaussian setting, but is
described in detail for completeness. We fix δ > 0 and a sequence gn, and choose

D1 ,

{
u : P

[
X ′(u) ∈ D2(u)

]
≥ 1

gn

}
(187)

D2(u) ,

{
x :

∣∣∣∣ 1n
n∑
i=1

al(ui, xi)− φl
∣∣∣∣ ≤ δ

n
, l = 1, · · · , L

}
, (188)

where X ′(u) ∼ QnX|U (x|u) and φl , EQ[al(U,X)]. For any u ∈ D1, we have from (187) that µ2,n(u) decays subex-
ponentially provided that gn grows subexponentially. Hence, it only remains to show that there exists a subexponential
sequence gn such that µ1,n decays subexponentially.

Defining
(U ′,X ′) ∼ QnU (u′)QnX|U (x′|u′), (189)

we have from Proposition 1 that

P
[
X ′ ∈ D2(U ′)

]
=

1

fn
(190)

for some fn growing at most polynomially in n. Since µ1,n = P[U ′ ∈ D1] by definition, we can expand (190) as

1

fn
= P

[
X ′ ∈ D2(U ′)

∣∣U ′ ∈ D1

]
µ1,n + P

[
X ′ ∈ D2(U ′)

∣∣U ′ /∈ D1

]
(1− µ1,n) (191)

≤ µ1,n +
1

gn
(1− µ1,n) (192)

≤ µ1,n +
1

gn
, (193)

where (192) follows by upper bounding the first probability in (191) by one and upper bounding the second probability
using the definition of D1. Choosing gn = 2fn, we have that gn grows polynomially, and µ1,n ≥ 1

2fn
decays at most

polynomially, as desired.
Since the conditions (175)–(176) each contain a supremum over a(·, ·), it suffices to choose L = 2 in (188) to prove

Theorem 16.

V. REFINED SUPERPOSITION CODING

In this section, we study a refined version of the superposition coding ensemble which yields higher achievable
rates for single-user mismatched decoding than the standard version studied in Section IV. While our analysis of the
error probability will yield non-asymptotic bounds and error exponents as intermediate steps, we focus on the resulting
achievable rates for the sake of clarity.

The ensemble is defined as follows. We fix a finite alphabet U , an input distribution QU ∈ P(U) and the rates R0

and {R1u}u∈U . We write M0 , enR0 and M1u , enR1u . We let PU (u) be the uniform distribution on the type class
Tn(QU,n), where QU,n ∈ Pn(U) is the most probable type under QU . Thus, as in (160), we have

PU (u) =
1

|Tn(QU,n)|11
{
u ∈ Tn(QU,n)

}
. (194)

As was done for standard superposition coding, we randomly generate the length-n auxiliary codewords {U (i)}M0
i=1

independently according to PU . The difference here is that the actual codewords are not generated conditionally
independently given U (i). Instead, we generate a number of partial codewords, and construct the length-n codeword
by placing the entries of a partial codeword in the indices where U takes a particular value.
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x1 = aabc

u

x

1 3 2 1 3 2 3 3 2 1 1 2

a c b a a b a a b b cc

x2 = bbbc

x3 = caaa

Figure 4. The construction of the final codeword from the auxiliary sequence u and the partial codeword x1, x2 and x3 for refined superposition
coding.

A more precise description is as follows. For each u ∈ U , we define

nu , QU,n(u)n (195)

and fix a number of partial codeword distributions PXu
∈ P(Xnu). For example, PXu

may be i.i.d., constant-
composition or cost-constrained. For each i = 1, . . . ,M0 and u ∈ U , we further generate the length-nu partial
codewords {X(i,ju)

u }M1u
ju=1 independently according to PXu

. For example, when U = {1, 2} we have{(
U (i),

{
X

(i,j1)
1

}M11

j1=1
,
{
X

(i,j2)
2

}M12

j2=1

)}M0

i=1

∼
M0∏
i=1

(
PU (u(i))

M11∏
j1=1

PX1
(x

(i,j1)
1 )

M12∏
j2=1

PX2
(x

(i,j2)
2 )

)
. (196)

The message m at the encoder is indexed as (m0,m11, . . . ,m1|U|). To transmit a given message, we treat U (m0) as
a time-sharing sequence; at the indices where U (m0) equals u, we transmit the symbols of X(m0,m1u)

u . There are
M0

∏
uM1u codewords, and hence the rate is R = R0 +

∑
uQU,n(u)R1u. An example of the construction of the

codeword x from an auxiliary sequences u and partial codewords x1, x2 and x3 is shown in Figure 4, where we have
U = {1, 2, 3} and X = {a, b, c}.

For clarity of exposition, we will present the analysis in the case that U = {1, 2}. The same arguments apply to
the general case. We let Ξ(u,x1,x2) denote the function for constructing the length-n codeword from the auxiliary
sequence and partial codewords, and write

X(i,j1,j2) , Ξ(U (i),X
(i,j1)
1 ,X

(i,j2)
2 ). (197)

We let yu(u) denote the subsequence of y corresponding to the indices where u equals u.
Upon receiving y, the decoder forms the estimate

(m̂0, m̂1, m̂2) = arg max
(i,j1,j2)

qn(x(i,j1,j2),y) (198)

= arg max
(i,j1,j2)

qn1
(
x
(i,j1)
1 ,y1(u(i))

)
qn2
(
x
(i,j2)
2 ,y2(u(i))

)
, (199)

where the objective in (199) follows by separating the indices where u = 1 from those where u = 2. By writing the
objective in this form, it is easily seen that for any given i, the pair (j1, j2) with the highest metric is the one for
which j1 maximizes qn1(x

(i,j1)
1 ,y1(u(i))) and j2 maximizes qn2(x

(i,j2)
2 ,y2(u(i))). Therefore, we can split the error

event into three (not necessarily disjoint) events:

(Type 0) m̂0 6= m0

(Type 1) m̂0 = m0 and m̂11 6= m11

(Type 2) m̂0 = m0 and m̂12 6= m12
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We denote the corresponding random-coding error probabilities by pe,0(n,M0,M11,M12), pe,1(n,M11) and pe,2(n,M12)

respectively. The overall random-coding error probability pe(n,M0,M11,M12) satisfies

max{pe,0, pe,1, pe,2} ≤ pe ≤ pe,0 + pe,1 + pe,2. (200)

We assume without loss of generality that (m0,m1,m2) = (1, 1, 1). We let U , X1, X2 and X be the codewords
corresponding to (1, 1, 1), yielding X = Ξ(U ,X1,X2). We let U , X1 and X2 be the codewords corresponding to
an arbitrary message with m0 6= 1. For the index i corresponding to U , we write X

(j1)

1 , X
(j2)

2 and X
(j1,j2) in place

of X(i,j1)
1 , X(i,j2)

2 and X(i,j1,j2) respectively. It follows that X
(j1,j2)

= Ξ(U ,X
(j1)

1 ,X
(j2)

2 ).

A. Rates for DMCs

In this section, we assume that the channel is a DMC, and consider the refined SC ensemble with each PXu chosen to
be uniform over a conditional type class. We fix a joint distribution QUX and for each u ∈ U we let Qu,nu ∈ Pnu(X )

be the most probable type under QX|U=u for sequences of length nu. We let PXu be the uniform distribution on the
type class Tnu(Qu,nu), yielding

PXu
(xu) =

1

|Tnu(Qu,nu)|11
{
xu ∈ Tnu(Qu,nu)

}
. (201)

The main result of this section is stated in the following theorem, which makes use of the LM rate defined in (6) and
the set T cc

0 defined in (163).

Theorem 17. For any finite set U and input distribution QUX , the rate

R = R0 +
∑
u

QU (u)R1u (202)

is achievable provided that R0 and {R1u}|U|u=1 satisfy

R1u ≤ ILM(QX|U=u) (203)

R0 ≤ min
P̃UXY ∈T0(QUX×W )

IP̃ (U ;Y ) +

[
max

K⊆U,K6=∅

∑
u∈K

QU (u)
(
IP̃ (X;Y |U = u)−R1u

)]+
. (204)

Proof: From the construction of the random-coding ensemble, the type-1 error probability pe,1 is precisely that of
the single-user constant-composition ensemble with rate R11, length n1 = nQU (1), and input distribution QX|U=1. A
similar statement holds for the type-2 error probability pe,2, and the analysis for these error events is identical to the
derivation of the LM rate [1], [2], yielding (203). For the remainder of the proof, we analyze the type-0 event.

The error probability for the type-0 event satisfies

pe,0 = c0P

[ ⋃
i 6=1

⋃
j1,j2

{
qn(X(i,j1,j2),Y )

qn(X,Y )
≥ 1

}]
, (205)

where (Y |X = x) ∼ Wn(·|x) and c0 ∈ [ 12 , 1], since breaking ties randomly increases the error probability by at
most a factor of two [26]. Writing the probability as an expectation given (U ,X,Y ) and applying the truncated union
bound, we obtain

pe,0 = c′0E

[
min

{
1, (M0 − 1)E

[
P
[ ⋃
j1,j2

{
qn(X

(j1,j2)
,Y )

qn(X,Y )
≥ 1

} ∣∣∣∣U]
∣∣∣∣∣U ,X,Y

]}]
, (206)

where c′0 ∈ [ 14 , 1], since for independent events the truncated union bound is tight to within a factor of 1
2 [23, Lemma

A.2]. We have written the probability of the union over j1 and j2 as an expectation given U .
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Let the joint types of (U ,X,Y ) and (U ,X
(j1,j2)

,Y ) be denoted by PUXY and P̃UXY respectively. We claim that

qn(X
(j1,j2)

,Y )

qn(X,Y )
≥ 1 (207)

if and only if
P̃UXY ∈ T cc

0,n(PUXY ) , T cc
0 (PUXY ) ∩ Pn(U × X × Y), (208)

where T cc
0 is defined in (163). The constraint P̃UX = PUX follows from the construction of the random coding

ensemble, P̃Y = PY follows since (U ,X,Y ) and (U ,X
(j1,j2)

,Y ) share the same Y sequence, and EP̃ [log q(X,Y )] ≥
EP [log q(X,Y )] coincides with the condition in (207). Thus, expanding (206) in terms of types yields

pe,0 = c′0
∑
PUXY

P
[(
U ,X,Y

)
∈ Tn(PUXY )

]
×min

{
1, (M0 − 1)

∑
P̃UXY ∈T cc

0,n(PUXY )

P
[(
U ,y

)
∈ Tn(P̃UY )

]
P
[ ⋃
j1,j2

{(
u,X

(j1,j2)
,y
)
∈ Tn(P̃UXY )

}]}
, (209)

where we write (u,y) to denote an arbitrary pair such that y ∈ Tn(PY ) and (u,y) ∈ Tn(P̃UY ). The dependence of
these sequences on PY and P̃UY is kept implicit for notational convenience.

Using a similar argument to the discussion following (199), we observe that
(
u,X

(j1,j2)
,y
)
∈ Tn(P̃UXY ) if and only

if
(
X

(ju)

u ,yu(u)
)
∈ Tnu(P̃XY |U=u) for u = 1, 2. Thus, applying Lemma 3 with Z1(j1) = X

(j1)
1 , Z2(j2) = X

(j2)
2 ,

A = Tnuy(P̃UXY ), A1 = Tn1

y1(u)(P̃XY |U=1) and A2 = Tn2

y2(u)(P̃XY |U=2), we obtain

P
[ ⋃
j1,j2

{(
u,X

(j1,j2)
,y
)
∈ Tn(P̃UXY )

}]
= c′′0 min

{
1,

min
u=1,2

M1uP
[(
Xu,yu(u)

)
∈ Tnu(P̃XY |U=u)

]
,M11M12P

[ ⋂
u=1,2

{(
Xu,yu(u)

)
∈ Tnu(P̃XY |U=u)

}]}
, (210)

where c′′0 ∈ [ 14 , 1]. Recall from the proof of Lemma 3 that the four terms in the minimization correspond to the four
subsets of {1, 2}.

Substituting (210) into (209), applying the properties of types in (A.9) and (A.10), and using the fact that the number
of joint types is polynomial in n, we obtain

lim
n→∞

− 1

n
log pe,0 = min

PUXY :PUX=QUX
min

P̃UXY ∈T cc
0 (PUXY )

D(PUXY ‖QUX ×W )

+

[
IP̃ (U ;Y ) +

[
max

K⊆U,K6=∅

∑
u∈K

QU (u)
(
IP̃ (X;Y |U = u)−R1u

)]+
−R0

]+
. (211)

Similarly to the proof of Theorem 2, we have replaced the minimizations over types by minimizations over all
distributions. Taking PUXY → QUX × W , we obtain that the right-hand side of (211) is positive whenever (204)
holds with strict inequality, thus completing the proof.

The proof of Theorem 17 gives an exponentially tight analysis, yielding the exponent in (211). However, this does not
prove that the resulting rate is ensemble-tight, since a subexponential decay of the error probability to zero is possible
in principle. We can prove the ensemble tightness of the rate using (209)–(210), and dealing with the summation over
PUXY more carefully by following [6]. Instead of replacing the summation in (209) by a maximum, we restrict the
summation to types which are ε-close to QUX ×W in terms of `1 norm. The probability of (U ,X,Y ) having such
a joint type approaches one as n→∞ for any ε > 0. Since c′0 and c′′0 in (206) and (210) are greater than or equal to
1
4 , the resulting error probability is lower bounded by 1

16 (1 + o(1)) for rates exceeding R∗0 + ∆(ε), where R∗0 denotes
the right-hand side of (204), and ∆(ε)→ 0 as ε→ 0. The desired result follows by taking ε→ 0.
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B. Comparison to Standard Superposition Coding

In this subsection, we show that the conditions in (203)–(204) can be weakened to (173)–(174) upon identifying

R1 =
∑
u

QU (u)R1u. (212)

We show this to be the case for any auxiliary alphabet and input distribution (in contrast with Proposition 3, where
we showed an analogous result to hold after the optimization of the parameters).

Proposition 4. For any auxiliary alphabet U and input distribution QUX , the rate maxR0,R11,··· ,R1|U| R0+
∑
uQU (u)R1u

given in Theorem 17 is at least as high as the rate maxR0,R1
R0 +R1 given in Theorem 14.

Proof: We begin by weakening (204) to (174). We lower bound the right-hand side of (204) by replacing the
maximum over K by the particular choice K = U , yielding the weakened condition

R0 ≤ min
P̃UXY ∈T cc

0 (QUX×W )
IP̃ (U ;Y ) +

[
IP̃ (X;Y |U)−R1

]+
, (213)

where we have used (212) and the definition of conditional mutual information. We can weaken (213) to (174) using
the chain rule for mutual information, and noting that (213) is always satisfied when the minimizing P̃UXY satisfies
IP̃ (U ;Y ) > R0.

Next, we show that highest value of R1 permitted by the |U| conditions in (203), denoted by R∗1, can be lower
bounded by the right-hand side of (173). From (212) and (203), we have

R∗1 =
∑
u

QU (u)IP̃∗(X;Y |U = u), (214)

where P̃ ∗XY |U=u is the distribution which achieves the minimum in (6) under QX|U=u. Defining the joint distribution
P̃ ∗UXY accordingly with P̃ ∗U = QU , we can write (214) as

R∗1 = IP̃∗(X;Y |U). (215)

Therefore, we can lower bound R∗1 by the right-hand side of (173) provided that P̃ ∗UXY ∈ T cc
1 (QUX × W ). The

constraints P̃ ∗UX = QUX and P̃ ∗UY = PUY in (164) are satisfied since we have chosen P̃ ∗UXY = QU , and since the
constraints in (6) imply P̃ ∗X|U=u = QX|U=u and P̃ ∗Y |U=u = PY |U=u for all u ∈ U . The constraint EP̃∗ [log q(X,Y )] ≥
EP [log q(X,Y )] is satisfied since, from (6), we have EP̃∗ [log q(X,Y ) |U = u] ≥ EP [log q(X,Y ) |U = u] for each
u ∈ U . This concludes the proof.

Intuitively, one can think of the gain of the refined SC ensemble as being due to a stronger dependence among
the codewords. For standard SC, the codewords {X(i,j)}M1

j=1 are conditionally independent given U (i), whereas for
refined SC this is generally not the case. It should be noted, however, that the exponents for standard SC may be better,
particularly at low to moderate rates. In particular, we noted in the proof of Theorem 17 that the type-1 and type-2
error events are equivalent to a single-user channel, but the corresponding block lengths are only n1 and n2. Thus, if
either QU (1) or QU (2) is close to zero, the corresponding exponent will be small. These observations are analogous
to the comparison of explicit time-sharing and coded time-sharing for the MAC, given in Section III-E.

C. Numerical Examples

In this subsection, we provide a number of examples comparing the two versions of superposition coding and the LM
rate. Numerical results are obtained using the optimization software YALMIP [29]. We do not explicitly give values for
Lapidoth’s rate [6] (see Theorem 3), since for each example given, we found it to coincide with the SC rate (Theorem
14). This was done by taking a locally optimized input distribution for SC, and using it to choose the parameters for
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the MAC using similar ideas to those given in Section IV-C (e.g. see (180)). In general, however, we required larger
auxiliary alphabet sizes for the MAC, and we found its direct local optimization to be more difficult than that of SC.

1) Example 1: Sum Channel: Here we provide an example which can be seen as an analog of Lapidoth’s parallel
channel example [6] (see Section I-C).

Given two channels (W1,W2) respectively defined on the alphabets (X1,Y1) and (X2,Y2), the sum channel is
defined to be the channel W (y|x) with |X | = |X1|+ |X2| and |Y| = |Y1|+ |Y2| such that one of the two subchannels
is used on each transmission [40]. One can similarly combine two metrics q1(x1, y1) and q2(x2, y2) to form a sum
metric q(x, y). Assuming without loss of generality that X1 and X2 are disjoint and Y1 and Y2 are disjoint, we have

q(x, y) =


q1(x1, y1) x1 ∈ X1 and y1 ∈ Y1
q2(x2, y2) x2 ∈ X2 and y2 ∈ Y2
0 otherwise,

(216)

and similarly for W (y|x). Let Q̂1 and Q̂2 be the distributions that maximize the LM rate in (6) on the respective
subchannels. We set U = {1, 2}, QX|U=1 = (Q̂1,0) and QX|U=2 = (0, Q̂2), where 0 denotes the zero vector. We
leave QU to be specified.

Combining the constraints P̃UX = QUX and EP̃ [log q(X,Y )] ≥ EP [log q(X,Y )] in (163), it is straightforward to
show that the minimizing P̃UXY (u, x, y) in (204) only takes on non-zero values for (u, x, y) such that (i) u = 1,
x ∈ X1 and y ∈ Y1, or (ii) u = 2, x ∈ X2 and y ∈ Y2. It follows that U is a deterministic function of Y under the
minimizing P̃UXY , and hence

IP̃ (U ;Y ) = H(QU )−HP̃ (U |Y ) = H(QU ). (217)

Therefore, the right-hand side of (204) is lower bounded by H(QU ). Using (202) and performing a simple optimization
of QU , it follows that the rate log

(
eI

LM
1 (Q̂1) + eI

LM
2 (Q̂2)

)
is achievable, where ILMν is the LM rate for subchannel ν.

An analogous result has been proved in the setting of matched decoding using the known formula for channel capacity
[40]. It should be noted that the LM rate of (W, q) can be strictly less than log

(
eI

LM
1 (Q̂1) + eI

LM
2 (Q̂2)

)
even for simple

examples (e.g. binary symmetric subchannels).
2) Example 2: Zero Undetected Error Capacity: It was shown by Csiszár and Narayan [3] that two special cases

of the mismatched capacity are the zero-undetected erasures capacity [41] and the zero-error capacity [42]. Here we
consider the zero-undetected erasures capacity, defined to be the highest achievable rate in the case that the decoder
is required to know with certainty whether or not an error has occurred. For any DMC, the zero-undetected erasures
capacity is equal to the mismatched capacity under the decoding metric q(x, y) = 11{W (y|x) > 0} [3].

We consider an example from [43], where X = Y = {0, 1, 2}, and the channel and metric are described by the
entries of the matrices

W =

 0.75 0.25 0

0 0.75 0.25

0.25 0 0.75

 (218)

q =

 1 1 0

0 1 1

1 0 1

 , (219)

where x indexes the rows and y indexes the columns.
Using an exhaustive search, we found the optimized LM rate to be R∗LM = 0.599 bits/use, using the input distribution

Q = (0.449, 0.551, 0).2 Furthermore, it was stated in [43] that the rate obtained by considering the second-order product

2The rate of 0.6128 bits/use reported in [43] appears to be erroneous.
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Table I
ACHIEVABLE RATES (BITS/USE) FOR THE MISMATCHED CHANNEL IN (20)-(21).

Input Distribution Refined SC Standard SC

Q
(1)
UX 1.313 1.060

Q
(2)
UX 1.236 1.236

Q
(LM)
UX 1.111 1.111

of the channel and metric (see Section I-C) is equal to R∗LM2 = 0.616 bits/use. Using local optimization techniques,
we verified that this rate is achieved with Q = (0, 0.250, 0, 0.319, 0, 0, 0, 0.181, 0.250), where the order of the inputs
is (0, 0), (0, 1), (0, 2), (1, 0), · · · , (2, 2).

The global optimization of (173)–(174) over U and QUX is difficult. However, setting |U| = 2 and applying local
optimization techniques using a number of starting points, we obtained an achievable rate of R∗sc = 0.695 bits/use,
with QU = (0.645, 0.355), QX|U=1 = (0.3, 0.7, 0) and QX|U=2 = (0, 0, 1). Thus, SC not only yields an improvement
over the single-letter LM rate, but also over the two-letter version. We obtained the same rate and input distribution
as that of standard SC when applying local optimization techniques to refined SC.

3) Example 3: We consider the channel and decoding metric described by the entries of the matrices

W =


0.99 0.01 0 0

0.01 0.99 0 0

0.1 0.1 0.7 0.1

0.1 0.1 0.1 0.7

 (220)

q =


1 0.5 0 0

0.5 1 0 0

0.05 0.15 1 0.05

0.15 0.05 0.5 1

 . (221)

We have intentionally chosen a highly asymmetric channel and metric, since such examples often yield larger gaps
between the various achievable rates. Using an exhaustive search, we found the optimized LM rate to be R∗LM = 1.111

bits/use, which is achieved by the input distribution Q∗X = (0.403, 0.418, 0, 0.179).
Setting |U| = 2 and applying local optimization techniques using a number of starting points, we obtained an

achievable rate of R∗rsc = 1.313 bits/use, with QU = (0.698, 0.302), QX|U=1 = (0.5, 0.5, 0, 0) and QX|U=2 =

(0, 0, 0.528, 0.472). We denote the corresponding input distribution by Q(1)
UX .

Applying similar techniques to the standard superposition coding rate in (173)–(174), we obtained an achievable rate
of R∗sc = 1.236 bits/use, with QU = (0.830, 0.170), QX|U=1 = (0.435, 0.450, 0.115, 0) and QX|U=2 = (0, 0, 0, 1). We
denote the corresponding input distribution by Q(2)

UX .
The achievable rates for this example are summarized in Table I, where Q(LM)

UX denotes the distribution in which U
is deterministic and the X-marginal maximizes the LM rate. While the achievable rate of Theorem 17 coincides with
that of Theorem 14 under Q(2)

UX , the former is significantly higher under Q(1)
UX . Both types of superposition coding

yield a strict improvement over the LM rate.
Our parameters may not be globally optimal, and thus we cannot conclude from this example that refined SC yields

a strict improvement over standard SC (and hence over Lapidoth’s rate [6]) after optimizing U and QUX . However, as
discussed in Section IV-C, improvements for a fixed set of random-coding parameters are still of significant interest
due to the fact that global optimizations are infeasible in general.
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D. Dual Expressions and General Alphabets

In this subsection, we present a dual expression for the rate given in Theorem 17 in the case that |U| = 2, as
well as extending the result to general alphabets X and Y . Generalizations to the case that |U| > 2 are possible, but
cumbersome. It should be noted that the random-coding ensemble relies on |U| being finite.

With U = {1, 2}, the condition in (204) is given by

R0 ≤ min
P̃UXY ∈T cc

0 (QUX×W )
IP̃ (U ;Y ) +

[
max

{
QU (1)

(
IP̃ (X;Y |U = 1)−R11

)
,

QU (2)
(
IP̃ (X;Y |U = 2)−R12

)
, IP̃ (X;Y |U)−R1

}]+
, (222)

where
R1 ,

∑
u

QU (u)R1u. (223)

Similarly to Lemma 7 for the MAC, the following lemma gives an an alternative expression for the condition in (204)
which is more amenable to Lagrange duality techniques.

Lemma 10. For any input distribution QUX and rates (R0, R11, R12), the condition in (222) holds if and only if at

least one of the following conditions hold:

R0 ≤ min
P̃UXY ∈T cc

0 (QUX×W )
IP̃ (U ;Y ) +

[
max

{
QU (1)

(
IP̃ (X;Y |U = 1)−R11

)
, IP̃ (X;Y |U)−R1

}]+
(224)

R0 ≤ min
P̃UXY ∈T cc

0 (QUX×W )
IP̃ (U ;Y ) +

[
max

{
QU (2)

(
IP̃ (X;Y |U = 2)−R12

)
, IP̃ (X;Y |U)−R1

}]+
. (225)

Proof: This is a special case of Lemma 6 with the following identifications:

f(z) = IP̃ (U ;Y ) (226)

g(z) = IP̃ (X;Y |U)−R1 (227)

g1(z) = QU (1)
(
IP̃ (X;Y |U = 1)−R11

)
(228)

g2(z) = QU (2)
(
IP̃ (X;Y |U = 2)−R12

)
. (229)

In this case, the condition in (31) holds with equality.
Since the right-hand side of (203) is the LM rate, we can make use of the dual expression in (7). The following

theorem gives the dual expressions for (224)–(225).

Theorem 18. The conditions in (224)–(225) can respectively be written as

R0 ≤ sup
s≥0,ρ1∈[0,1],ρ2∈[0,1],a(·,·)

E

log

(
q(X,Y )s

′(u)ea(U,X)
)ρ′(U)

E
[(

E
[
q(X,Y )s′(U)ea(U,X)

∣∣U])ρ′(U) ∣∣∣Y ]
− ∑

u=1,2

ρ′(u)QU (u)R1u (230)

R0 ≤ sup
s≥0,ρ1∈[0,1],ρ2∈[0,1],a(·,·)

E

log

(
q(X,Y )s

′′(u)ea(U,X)
)ρ′′(U)

E
[(

E
[
q(X,Y )s′′(U)ea(U,X)

∣∣U])ρ′′(U) ∣∣∣Y ]
− ∑

u=1,2

ρ′′(u)QU (u)R1u, (231)

where

ρ′(1) = ρ1, ρ
′(2) = ρ1ρ2, s

′(1) = ρ2s, s
′(2) = s (232)

ρ′′(1) = ρ1ρ2, ρ
′′(2) = ρ2, s

′′(1) = s, s′′(2) = ρ1s (233)

and (U,X, Y, U,X) ∼ QUX(u, x)W (y|x)QUX(u, x).
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Proof: See Appendix D.
It is interesting to observe that the conditions in (230)–(231) bear a strong resemblance to the standard SC condition

in (176). In particular, the latter can be recovered by setting ρ2 = 1 in (230) or ρ1 = 1 in (231), thus providing an
alternative proof of Proposition 3 for the case that |U| = 2.

In order to extend Theorem 18 to general alphabets, we again use cost-constrained coding. We consider the ensemble
given in (196), with PXu given by

PXu
(xu) =

1

µu,nu

nu∏
i=1

QX|U (xu,i|u)11
{
xu ∈ Du,nu

}
, (234)

where

Du,nu ,

{
xu :

∣∣∣∣∣ 1

nu

nu∑
i=1

au,l(xu,i)− φu,l
∣∣∣∣∣ ≤ δ

nu
, l = 1, . . . , Lu

}
(235)

φu,l , EQ [au,l(X) |U = u] , (236)

and where µu,nu , {au,l} and δ are defined analogously to (98)–(99), and nu is defined in (195).

Theorem 19. For any mismatched memoryless single-user channel W and input distribution QUX (U = 1, 2), the rate

R = R0 +
∑
u=1,2QU (u)R1u is achievable for any (R0, R11, R12) satisfying (203) (with ILM defined in (7)) and at

least one of (230)–(231), where each supremum is subject to EQ[a(U,X)2] <∞. Furthermore, the rate is achievable

using cost-constrained coding in (234) with L1 = L2 = 2.

Proof: The direct derivation of (230)–(231) is given in Appendix D. The choice L1 = L2 = 2 suffices since for
u = 1, 2, one cost is required for (203) and another for (230)–(231). It suffices to let the cost functions for (230)–(231)
coincide, since the theorem only requires that one of the two hold.

VI. CONCLUSION

We have provided finite-length bounds, error exponents and achievable rates for mismatched decoding using three
multiuser coding techniques. The bounds on the probability of a multiply-indexed union given in Section II-A are
general, and may be valuable for obtaining finite-length bounds and error exponents for other network information
theory settings. Interestingly, their utility is not restricted to suboptimal decoding rules; see [44] for an application to
the matched relay channel.

Throughout the paper, we considered several variations of constant-composition random coding and cost-constrained
random coding. Furthermore, we have discussed the number of costs required for the cost-constrained ensemble to
match the performance of the constant-composition ensemble. From Lemma 5, we see that each dual optimization
variable (e.g. a1(·)) corresponds to a primal constraint on a marginal (e.g. PX1

= Q1). Since the dual variables also
correspond to cost functions, we can use this observation to relate the number of costs with the number of marginal
constraints. For example, consider the exponents for the mismatched MAC (Theorems 2 and 4) and those for ML
decoding (Theorems 8 and 9). In the primal domain, ML decoding yields two fewer constraints on the Xν marginals
for each ν = 1, 2, due to the absence of the sets T cc

ν for ν = 1, 2, 12. Analogously, in the dual domain, the number of
cost functions per user is reduced by two.

APPENDIX A
THE METHOD OF TYPES

In this section we give an overview of the method of types, and present the properties that are used throughout
the paper. Wherever possible, we use standard notation (e.g. see [10]), but for completeness we include all relevant
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definitions in this section. We do not provide proofs, since we only present well-known properties of simple variations
thereof (e.g. see [10, Ch. 2], [11], [45]).

Let X be a finite alphabet. The type of a sequence x = (x1, . . . , xn) ∈ Xn is its empirical distribution, defined by

P̂x(x) ,
1

n

n∑
i=1

11{xi = x}. (A.1)

The set of all types on Xn is denoted by Pn(X ). For a given PX ∈ Pn(X ), the type class Tn(PX) is the set of all
sequences in Xn with type PX ,

Tn(PX) ,
{
x ∈ Xn : P̂x = PX

}
. (A.2)

For two finite alphabets X and Y , P̂xy(x, y), Pn(X ×Y) and Tn(PXY ) are defined analogously. In this case, the type
is also referred to as a joint type. The conditional type of y given x is defined by

P̂y|x(y|x) ,
P̂xy(x, y)

P̂x(x)
(A.3)

if P̂x(x) > 0, and P̂y|x(y|x) = 1
|Y| otherwise. The set of all conditional types on Yn given Xn is denoted by Pn(Y|X ).

For any PXY ∈ Pn(X ×Y) and sequence x, the conditional type class Tnx (PXY ) is the set of all sequences y in Yn
such that (x,y) has joint type PXY ,

Tnx (PXY ) =
{
y ∈ Yn : P̂xy = PXY

}
. (A.4)

The key property of types which permits an exponentially tight analysis of certain quantities is that the number of
(possibly joint or conditional) types is polynomial in n:

|Pn(X )| ≤ (n+ 1)|X |−1 (A.5)

|Pn(Y|X )| ≤ (n+ 1)|X ||Y|−1. (A.6)

For concreteness, we present the subsequent properties of types in the context of the multiple-access channel.
However, the properties are also used in other settings throughout this paper. We fix the conditional input distributions
Q1 ∈ P(X1) and Q2 ∈ P(X2), and let Q1,n ∈ Pn(X1) and Q2,n(x) ∈ Pn(X2) be the most probable types under Q1

and Q2 respectively. We define X1 and X1 to be independent random variables drawn from a uniform distribution on
the type class Tn(Q1,n), and similarly for X2 and X2 We define Y to be generated from X1 and X2 according to
the conditional product distribution on W (y|x1, x2).

We have the following:

• Letting Qn1 (x1) ,
∏n
i=1Q1(x1,i), we have

P[X1 = x1] ≤̇Qn1 (x1). (A.7)

• For any PX1X2
such that PX1

= Q1,n and PX2
= Q2,n,

P
[
(X1,X2) ∈ Tn(PX1X2)

] .
= exp

(
− nIP (X1;X2)

)
. (A.8)

• For any PX1X2Y such that PX1 = Q1,n and PX2 = Q2,n,

P
[
(X1,X2,Y ) ∈ Tn(PX1X2Y )

] .
= exp

(
− nD(PX1X2Y ‖Q1 ×Q2 ×W )

)
. (A.9)

• For ν = 1, 2, if y ∈ Tn(PY ), then

P
[
(Xν ,y) ∈ Tn(P̃XνY )

] .
= exp

(
− nIP̃ (Xν ;Y )

)
(A.10)
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for any P̃XνY such that P̃Xν = Qν,n and P̃Y = PY .
• If y ∈ Tn(PY ), then

P
[
(X1,X2,y) ∈ Tn(P̃X1X2Y )

] .
= exp

(
− nD(P̃X1X2Y ‖Q1 ×Q2 × P̃Y )

)
(A.11)

for any P̃X1X2Y such that P̃X1 = Q1,n, P̃X2 = Q2,n and P̃Y = PY .

APPENDIX B
CONVEX OPTIMIZATION PROOFS

A. Proof of Lemma 5

The Lagrangian [12, Sec. 5.1.1] of the optimization problem in (29) is given by

L =
∑
z1,z2

P̃Z1Z2(z1, z2)

(
log

P̃ (z1, z2)

PZ1(z1)PZ2(z2)
− log g(z1, z2)− λ log f(z1, z2)

)
+
∑
z1

µ1(z1)
(
PZ1(z1)− P̃Z1(z1)

)
+
∑
z2

µ2(z2)
(
PZ2(z2)− P̃Z2(z2)

)
+ λβ, (B.1)

where λ ≥ 0, µ1(·) and µ2(·) are Lagrange multipliers. Since the objective in (29) is convex and the constraints
are affine, the optimal value is equal to L for some choice of P̃Z1Z2

and the Lagrange multipliers satisfying the
Karush-Kuhn-Tucker (KKT) conditions [12, Sec. 5.5.3].

We proceed to simplify (B.1) using the KKT conditions. Setting ∂L

∂P̃ (z1,z2)
= 0 yields

1 + log
P̃Z1Z2

(z1, z2)

PZ1(z1)PZ2(z2)f(z1, z2)λg(z1, z2)
− µ1(z1)− µ2(z2) = 0, (B.2)

and hence
P̃Z1Z2

(z1, z2) = PZ1
(z1)PZ2

(z2)f(z1, z2)λg(z1, z2)e−1+µ1(z1)+µ2(z2). (B.3)

Applying the constraint P̃Z2
= PZ2

yields∑
z1

PZ1(z1)f(z1, z2)λg(z1, z2)eµ1(z1) = e1−µ2(z2), (B.4)

and hence
µ2(z2) = 1− log

∑
z1

PZ1
(z1)f(z1, z2)λg(z1, z2)eµ1(z1). (B.5)

Substituting (B.2) into (B.1) yields

L = −1 +
∑
z1

µ1(z1)PZ1
(z1) +

∑
z2

µ2(z2)PZ2(z2) + λβ, (B.6)

and applying (B.5) yields (30) with the supremum omitted. It follows that (30) is an upper bound to (29).
To obtain a matching lower bound, we make use of the log-sum inequality [46, Thm. 2.7.1] similarly to [4, Appendix

A]. For any P̃Z1Z2
satisfying the constraints in (29), we can lower bound the objective in (29) as follows:∑

z1,z2

P̃Z1Z2
(z1, z2) log

P̃ (z1, z2)

PZ1
(z1)PZ2

(z2)g(z1, z2)
(B.7)

≥
∑
z1,z2

P̃Z1Z2(z1, z2) log
P̃ (z1, z2)

PZ1
(z1)PZ2

(z2)f(z1, z2)λg(z1, z2)
+ λβ (B.8)

=
∑
z1,z2

P̃Z1Z2
(z1, z2) log

P̃ (z1, z2)

PZ1(z1)PZ2(z2)f(z1, z2)λg(z1, z2)eµ1(z1)
+
∑
z1

PZ1
(z1)µ1(z1) + λβ, (B.9)
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where (B.8) holds for any λ ≥ 0 due to the constraint EP̃ [log f(Z1, Z2)] ≥ β, and (B.9) holds for any µ1(·) by a
simple expansion of the logarithm. Applying the log-sum inequality, we can lower bound (B.9) by the objective in
(30). Since λ ≥ 0 and µ1(·) are arbitrary, the proof is complete.

B. Proof of Lemma 6

We define the functions

Φ0(z) , f(z) +
[
g(z)

]+
(B.10)

Φ1(z) , f(z) +
[

max
{
g1(z), g(z)

}]+
(B.11)

Φ2(z) , f(z) +
[

max
{
g2(z), g(z)

}]+
. (B.12)

Since f(·), g(·), g1(·) and g2(·) are convex by assumption, it follows that Φ0(·), Φ1(·) and Φ2(·) are also convex.
We wish to show that

min
z∈D

max
{

Φ1(z),Φ2(z)
}

= max

{
min
z∈D

Φ1(z),min
z∈D

Φ2(z)

}
. (B.13)

We define the regions

R1 =
{
z : Φ1(z) > Φ0(z)

}
(B.14)

R2 =
{
z : Φ2(z) > Φ0(z)

}
. (B.15)

The key observation is that R1 and R2 are disjoint. To see this, we observe from (B.10)–(B.12) that any z ∈ R1 ∩R2

must satisfy g1(z) > g(z) and g2(z) > g(z). When combined with (31), these imply g1(z) < 0 and g2(z) < 0, and
it follows from (B.10)–(B.12) that Φ0(z) = Φ1(z) = Φ2(z), in contradiction with the assumption that z ∈ R1 ∩R2.
Thus, R1∩R2 is empty, which implies that g1(z) and g2(z) cannot simultaneously be the unique maximizers in (B.11)
and (B.12) respectively. Combining this observation with (B.10), we obtain

Φ0(z) = min
{

Φ1(z),Φ2(z)
}
. (B.16)

To prove (B.13), we use a proof by contradiction. Let the left-hand side and right-hand side be denoted by f∗ and
f̃∗ respectively. It is easily seen that f∗ ≥ f̃∗ always holds, so we assume that f∗ > f̃∗. Let z∗1 and z∗2 minimize Φ1

and Φ2 respectively on the right-hand side of (B.13), so that

f̃∗ = max
{

Φ1(z∗1),Φ2(z∗2)
}
. (B.17)

The assumption f∗ > f̃∗ implies that

Φ2(z∗1) > Φ1(z∗1) (B.18)

Φ1(z∗2) > Φ2(z∗2). (B.19)

Next, we define

Φ′0(λ) , Φ0

(
λz∗1 + (1− λ)z∗2

)
(B.20)

Φ′1(λ) , Φ1

(
λz∗1 + (1− λ)z∗2

)
(B.21)

Φ′2(λ) , Φ2

(
λz∗1 + (1− λ)z∗2

)
, (B.22)

for λ ∈ [0, 1]. Since any convex function is also convex when restricted to a straight line [12, Section 3.1.1], it follows
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that Φ′0, Φ′1 and Φ′2 are convex in λ. From (B.18)–(B.19), we have

Φ′2(1) > Φ′1(1) (B.23)

Φ′1(0) > Φ′2(0). (B.24)

Since Φ′1 and Φ′2 are convex, they are also continuous, and it follows that the two must intersect somewhere in (0, 1),
say at λ∗. Therefore,

Φ′0(λ∗) = min
{

Φ′1(λ∗),Φ′2(λ∗)
}

(B.25)

= max
{

Φ′1(λ∗),Φ′2(λ∗)
}

(B.26)

≥ min
z∈D

max
{

Φ1(z),Φ2(z)
}

(B.27)

= f∗, (B.28)

where (B.25) follows from (B.16), and (B.27) follows from (B.21)–(B.22). Finally, we have the following contradiction:

• Combining (B.28) with the assumption that f∗ > f̃∗, we have

Φ′0(λ∗) > f̃∗ = max{Φ′1(1),Φ′2(0)}. (B.29)

• From (B.16), we have Φ′0(λ) = min{Φ′1(λ),Φ′2(λ)}, and it follows from (B.23)–(B.24) that Φ′0(1) = Φ′1(1) and
Φ′0(0) = Φ′2(0). Hence, using the convexity of Φ′0 and Jensen’s inequality, we have

Φ′0(λ∗) ≤ λ∗Φ′1(1) + (1− λ∗)Φ′2(0) (B.30)

≤ max{Φ′1(1),Φ′2(0)}. (B.31)

APPENDIX C
MULTIPLE-ACCESS CHANNEL PROOFS

A. Proof of Theorem 4

Each of the four expressions are derived using a similar analysis, so we focus on Ecc
r,12,1. We claim that the expression

in (76) is equivalent to

Ecc
r,12,1(Q, R1, R2) = max

ρ1∈[0,1],ρ2∈[0,1]
Êcc

0,12,1(Q, ρ1, ρ2)− ρ1(R1 + ρ2R2), (C.1)

where

Êcc
0,12,1(Q, ρ1, ρ2) , min

PX1X2Y
∈Scc(Q)

min
P̃X1X2Y

∈T cc
12 (PX1X2Y

)

D(PX1X2Y ‖Q1 ×Q2 ×W ) + ρ1
(
IP̃ (X1;Y ) + ρ2IP̃ (X2;X1, Y )

)
. (C.2)

This follows by using (111) to write

Ecc
r,12,1(Q, R1, R2) = min

PX1X2Y
∈Scc(Q)

min
P̃X1X2Y

∈T cc
12 (PX1X2Y

)

D(PX1X2Y ‖Q1 ×Q2 ×W ) +
[
IP̃ (X1;Y ) +

[
IP̃ (X2;X1, Y )−R2

]+ −R1

]+
(C.3)

and using a similar argument to [19, Sec. IV] as follows. We first apply [α]+ = max0≤ρ1≤1 ρ1α to the outer [·]+
quantity in (C.3). The resulting objective is linear in ρ1 and jointly convex in (PX1X2Y , P̃X1X2Y ), so we can apply
Fan’s minimax theorem [30] to interchange the maximization and minimization. Applying the same argument to the
remaining [·]+ term yields (C.1)–(C.2).
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We define the sets

V1(PX1X2Y , P̂X1Y ) ,

{
P̃X1X2Y ∈ P(X1 ×X2 × Y) : P̃X2 = PX2 ,

P̃X1Y = P̂X1Y ,EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )]

}
(C.4)

V2(PX1X2Y ) ,

{
P̂X1Y ∈ P(X1 × Y) : P̂X1

= PX1
, P̂Y = PY

}
. (C.5)

It follows that P̃X1X2Y ∈ T cc
12 (PX1X2Y ) (see (51)) if and only if P̃X1X2Y ∈ V1(PX1X2Y , P̂X1Y ) for some P̂X1Y ∈

V2(PX1X2Y ). We can therefore replace the minimization over P̃X1X2Y ∈ T cc
12 (PX1X2Y ) in (C.2) with minimizations

over P̂X1Y ∈ V2(PX1X2Y ) and P̃X1X2Y ∈ V1(PX1X2Y , P̂X1Y ).
We prove the theorem by performing the minimization in several steps, and performing multiple applications of

Lemma 5. Each such application will yield an overall optimization of the form sup min sup{·}, and we will implicitly
use Fan’s minimax theorem [30] to obtain an equivalent expression of the form sup sup min{·}. Thus, we will leave
the optimization of the dual variables until the final step.

Step 1: We first consider the minimization of the term IP̃ (X1;X2, Y ) over P̃X1X2Y when PX1X2Y ∈ Scc(Q) and
P̂X1Y ∈ V2(PX1X2Y ) are fixed, and thus all of the terms in the objective in (C.2) other than IP̃ (X1;X2, Y ) are fixed.
The minimization is given by

F1 , min
P̃X1X2Y

∈V1(PX1X2Y
,P̂X1Y

)
IP̃ (X1;X2, Y ). (C.6)

Applying Lemma 5 with PZ1
= PX2

, PZ2
= P̂X1Y and µ1(·) = a2(·), we obtain the dual expression

F1 = −
∑
x1,y

P̂X1Y (x1, y) log
∑
x2

PX2
(x2)q(x1, x2, y)sea2(x2)

+ s
∑

x1,x2,y

PX1X2Y (x1, x2, y) log q(x1, x2, y) +
∑
x2

PX2
(x2)a2(x2). (C.7)

Step 2: After Step 1, the overall objective (see (C.2)) is given by

D(PX1X2Y ‖Q1 ×Q2 ×W ) + ρ1
(
IP̂ (X1;Y ) + ρ2F1

)
, (C.8)

where we have replaced IP̃ (X1;Y ) by IP̂ (X1;Y ) due to the constraint P̃X1Y = P̂X1Y in (C.4). Since the only terms
involving P̂X1Y are IP̂ (X1;Y ) and the first term in the summation of (C.7), we consider the minimization

F2 , min
P̂X1Y

∈V2(PX1X2Y
)
IP̂ (X1;Y )− ρ2

∑
x1,y

P̂X1Y (x1, y) log
∑
x2

PX2
(x2)q(x1, x2, y)sea2(x2). (C.9)

Applying Lemma 5 with PZ1
= PX1

, PZ2
= PY and µ1(·) = a1(·), we obtain

F2 = −
∑
y

PY (y) log
∑
x1

PX1
(x1)

(∑
x2

PX2
(x2)q(x1, x2, y)sea2(x2)

)ρ2
ea1(x1) +

∑
x1

PX1
(x1)a1(x1). (C.10)

Step 3: From (C.7), (C.8) and (C.10), the overall objective is now given by

F3 , D(PX1X2Y ‖Q1 ×Q2 ×W ) + ρ1F2 + ρ1ρ2
∑

x1,x2,y

PX1X2Y (x1, x2, y) log q(x1, x2, y)sea2(x2). (C.11)

By expanding the divergence and writing aν(xν) = log eaν(xν) (ν = 1, 2), (C.11) can equivalently be expressed as

F3 = −
∑

x1,x2,y

PX1X2Y (x1, x2, y) log
g3(x1, x2, y)

PX1X2Y (x1, x2, y)
, (C.12)
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where

g3(x1, x2, y) , Q1(x1)Q2(x2)W (y|x1, x2)

(∑
x1

PX1
(x1)

(∑
x2
PX2

(x2)q(x1, x2, y)sea2(x2)

q(x1, x2, y)sea2(x2)

)ρ2
ea1(x1)

ea1(x1)

)ρ1
.

(C.13)
From (C.2), we must minimize F3 over PX1X2Y ∈ S(Q). We first minimize over PY |X1X2

for a fixed PX1X2 . Rather
than using Lagrange duality, we can simply write

PX1X2Y (x1, x2, y) = PX1X2
(x1, x2)PY |X1X2

(y|x1, x2) (C.14)

and apply Jensen’s inequality to (C.12) to obtain

F3 ≥ −
∑

x1,x2,y

PX1X2(x1, x2) log
∑
y

g3(x1, x2, y)

PX1X2(x1, x2)
. (C.15)

It follows that the minimizing PY |X1X2
is the one which makes g3(x1,x2,y)

PX1X2Y
(x1,x2,y)

independent of y for any given x1

and x2, so that equality holds in (C.15).
Step 4: Using (C.15) and the definition of g3, we can write the overall objective as

F4 , IP (X1;X2)− EP [log g4(X1, X2)], (C.16)

where

g4(x1, x2) ,
∑
y

W (y|x1, x2)

(∑
x1

PX1
(x1)

(∑
x2
PX2(x2)q(x1, x2, y)sea2(x2)

q(x1, x2, y)sea2(x2)

)ρ2
ea1(x1)

ea1(x1)

)ρ1
. (C.17)

Applying Lemma 5 with PZ1 = Q2, PZ2 = Q1 and µ1(·) = a′2(·), we obtain

F4 = −
∑
x1

Q1(x1) log
∑
x2

Q2(x2)g4(x1, x2)ea
′
2(x2) +

∑
x2

Q2(x2)a′2(x2). (C.18)

Step 5: From (C.18), we have

L4 = −
∑
x1

Q1(x1) log

(
ea
′
1(x1)−φ′1

∑
x2

Q2(x2)g4(x1, x2)ea
′
2(x2)−φ′2

)
(C.19)

≥ − log
∑
x1,x2

Q1(x1)Q2(x2)g4(x1, x2)ea
′
2(x2)−φ′2ea

′
1(x1)−φ′1 , (C.20)

where (C.19) follows for any a′1(·) with φ′ν , EQν [a′ν(Xν)] (ν = 1, 2) by expanding the logarithm, and (C.20) follows
from Jensen’s inequality. By choosing a′1(·) to make the argument to the logarithm in (C.19) independent of x1, we
obtain equality in (C.20). Thus, the proof is concluded by substituting the expression for g4 in (C.17) into (C.20), and
taking the supremum over s ≥ 0, a1(·), a2(·), a′1(·) and a′2(·).

APPENDIX D
REFINED SUPERPOSITION CODING PROOFS

A. Proof of Theorem 18

We focus on showing the equivalence of (224) and (230), since identical arguments apply to (225) and (231). The
primal expression is written in terms of a minimization over P̃UXY . It is convenient to split this distribution into three
distributions: P̃UY , P̂XY , P̃XY |U=1 and ˆ̂

PXY , P̃XY |U=2. Using an identical argument to the start of Appendix C,
we can write the right-hand side of (224) as

sup
ρ1∈[0,1],ρ2∈[0,1]

min
P̃UY ,P̂XY ,

ˆ̂
PXY

IP̃ (U ;Y ) + ρ1QU (1)IP̂ (X;Y ) + ρ1ρ2QU (2)I ˆ̂
P

(X;Y )− ρ1R11 − ρ1ρ2R12. (D.1)
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Defining PUXY = QUX×W , the minimization is subject to the constraints (i) P̃U = QU , (ii) P̂X = QX|U=1, (iii) ˆ̂
PX =

QX|U=2, (iv) P̃Y = PY , (v) P̂Y = P̃Y |U=1, (vi) ˆ̂
PY = P̃Y |U=2, (vii) QU (1)EP̂ [log q(X,Y )]+QU (2)E ˆ̂

P
[log q(X,Y )] ≥

EP [log q(X,Y )].
Similarly to Appendix C, we apply the minimization in several steps, using Fan’s minimax theorem [30] after each

step so that the supremum over the dual variables can be left until the end. To avoid repetition, we provide less detail
than the amount given in Appendix C.

Step 1: For given joint distributions P̃UY and P̂XY , the minimization F1 , min ˆ̂
PXY

I ˆ̂
P

(X;Y ) subject to the
constraints (iii), (vi) and (vii) has a dual expression given by

F1 = −F1,1 + F1,2 + F1,3 − sQU (1)F1,4, (D.2)

where

F1,1 ,
∑
y

P̃Y |U (y|2) log
∑
x

Q2(x)q(x, y)sQU (2)ea2(x) (D.3)

F1,2 ,
∑
x2

Q2(x)a2(x) (D.4)

F1,3 , s
∑
x,y

PXY (x, y) log q(x, y) (D.5)

F1,4 ,
∑
x,y

P̂XY (x, y) log q(x, y), (D.6)

and where s ≥ 0 and a2(·) are dual variables.
Step 2: For a given joint distribution P̃UY , the minimization F2 , minP̂XY IP̂ (X;Y )−sρ2QU (2)F1,4(P̂XY ) subject

to (ii) and (v) has a dual expression given by

F2 = F2,1 − F2,2, (D.7)

where

F2,1 ,
∑
x

Q1(x)a1(x) (D.8)

F2,2 ,
∑
y

P̃Y |U (y|1) log
∑
x

Q1(x)q(x, y)sρ2QU (2)ea1(x), (D.9)

and where a1(·) is a dual variable.
Step 3: The minimization F3 , minP̃UY IP̃ (U ;Y ) − ρ1QU (1)F2,2 − ρ1ρ2QU (2)F1,1 subject to (i) and (iv) can

equivalently be expressed as

F3 = IP̃ (U ;Y )−
∑
u

ρ′(u)
∑
y

P̃UY (u, y) log
∑
x

Qu(x)q(x, y)s
′(u)ea(u,x) (D.10)

using the definitions in (232) along with a(u, x) = au(x). The dual expression is thus given by

F3 = −
∑
y

PY (y) log
∑
u

QU (u)

(∑
x

Qu(x)q(x, y)s
′(u)ea(u,x)

)ρ′(u)
eb(u) +

∑
u

QU (u)b(u), (D.11)

where b(·) is a dual variable.
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Step 4: The final objective is given by F3 + ρ1QU (1)F2,1 + ρ1ρ2QU (2)
(
F1,2 + F1,3). Applying some algebraic

manipulations yields the dual expression

∑
u,x,y

PUXY (u, x, y) log

(
q(x, y)s

′(u)ea(u,x)
)ρ′(u)

eb(u)

∑
uQU (u)

(∑
xQu(x)q(x, y)s′(u)ea(u,x)

)ρ′(u)
eb(u)

. (D.12)

The variable b(u) can be factored into a(u, x) without affecting the final dual optimization, and can thus be removed
from the numerator and denominator in (D.12). This concludes the proof.

B. Proof of Theorem 19

We focus on the derivation of (230), since (231) can be derived similarly. The ideas used in the derivation are similar
to those for the MAC (see the proof of Theorem 6), but the details are more involved.

Applying Lemma 1 to the union in (206), with Z1(i) = X
(1,i)
1 and Z2(j) = X

(1,j)
2 , we obtain the non-asymptotic

RCU bound

pe,0 ≤ E

[
min

{
1, (M0 − 1)E

[
min

{
1,M11E

[
min

{
1,M12P

[
qn
(
X,Y

)
qn(X,Y )

≥ 1
∣∣∣X1

]} ∣∣∣U]} ∣∣∣∣∣U ,X,Y

]}]
.

(D.13)
Using (199), Markov’s inequality, and min{1, α} ≤ αρ (ρ ∈ [0, 1]), we obtain3

pe,0 ≤ (M0M
ρ1
11M

ρ1ρ2
12 )ρ0

∑
u,x1,x2

PU (u)PX1
(x1)PX2

(x2)
∑
y

Wn(y|Ξ(u,x1,x2))

(∑
u

PU (u)

×
(∑

x1

PX1(x1)

(
qn1
(
x1,y1(u))

qn1(x1,y1(u))

)ρ2s)ρ1(∑
x2

PX2(x2)

(
qn2
(
x2,y2(u))

qn2(x2,y2(u))

)s)ρ1ρ2)ρ0
, (D.14)

where s ≥ 0 and ρ1, ρ2 ∈ [0, 1] are arbitrary. Using the definition of the cost-constrained ensemble in (234)–(236), we
obtain

pe,0 ≤̇ (M0M
ρ1
11M

ρ1ρ2
12 )ρ0

∑
u,x1,x2

PU (u)PX1
(x1)PX2

(x2)
∑
y

Wn(y|Ξ(u,x1,x2))

(∑
u

PU (u)

×
(∑

x1

PX1(x1)

(
qn1
(
x1,y1(u))

qn1(x1,y1(u))

)ρ2s ean1
1 (x1)

ea
n1
1 (x1)

)ρ1(∑
x2

PX2(x2)

(
qn2
(
x2,y2(u))

qn2(x2,y2(u))

)s
ea
n2
2 (x2)

ea
n2
2 (x2)

)ρ1ρ2)ρ0
, (D.15)

where for u = 1, 2, au(·) is one of the Lu = 2 cost functions in (235), and anuu (xu) ,
∑nu
i=1 au(xu,i). For each

(u,x1,x2,y), we write the argument to the summation over y in (D.15) as a product of two terms, namely

T1 ,Wn(y|Ξ(u,x1,x2))qn1(x1,y1(u))−ρ1ρ2se−ρ1a
n1
1 (x1)qn2(x2,y2(u))−ρ1ρ2se−ρ1ρ2a

n2
2 (x2) (D.16)

T2 ,

(∑
u

PU (u)

(∑
x1

PX1(x1)qn1
(
x1,y1(u))ρ2sea

n1
1 (x1)

)ρ1(∑
x2

PX2(x2)qn2
(
x2,y2(u))sea

n2
2 (x2)

)ρ1ρ2)ρ0
.

(D.17)

3In the case of continuous alphabets, the summations should be replaced by integrals.
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Since PXu is upper bounded by a subexponential prefactor times Qnu for u = 1, 2 (see Proposition 1), we have∑
x1

PX1
(x1)qn1

(
x1,y1(u))ρ2sea

n1
1 (x1) ≤̇

n1∏
i=1

∑
x1

Q1(x1)q(x1, y1,i(u))ρ2sea1(x1) (D.18)

∑
x2

PX2(x2)qn2
(
x2,y2(u))sea

n2
2 (x2) ≤̇

n2∏
i=1

∑
x2

Q2(x2)q(x2, y2,i(u))sea2(x2), (D.19)

where for u = 1, 2, yu,i(u) is the i-th entry of yu(u). Using the definitions in (232) along with a(u, x) , au(x), we
thus obtain (∑

x1

PX1
(x1)qn1

(
x1,y1(u))ρ2sea

n1
1 (x1)

)ρ1(∑
x2

PX2
(x2)qn2

(
x2,y2(u))sea

n2
2 (x2)

)ρ1ρ2
(D.20)

≤̇
( n1∏
i=1

∑
x1

Q1(x1)q(x1, y1,i(u))ρ2sea1(x1)

)ρ1( n2∏
i=1

∑
x2

Q2(x2)q(x2, y2,i(u))sea2(x2)

)ρ1ρ2
(D.21)

=

n∏
i=1

(∑
x

Q(x|ui)q(x, yi)s
′(ui)ea(ui,x)

)ρ′(ui)
. (D.22)

Hence, and using the fact that PU (u) ≤̇QnU (u) (see (A.7)), we obtain

T2 ≤̇
n∏
i=1

(∑
u

QU (u)

(∑
x

Q(x|ui)q(x, yi)s
′(ui)ea(ui,x)

)ρ′(ui))ρ0
. (D.23)

A similar argument (without the need for the ≤̇ steps) gives

T1 =

n∏
i=1

∑
y

W (y|xi)q(xi, y)−ρ
′(ui)s

′(ui)e−ρ
′(ui)a(ui,xi), (D.24)

where we have used the fact that Wn(y|Ξ(u,x1,x2)) = Wn1(y1(u)|x1)Wn2(y2(u)|x2). Substituting (D.23) and
(D.24) into (D.15), we obtain

pe,0 ≤̇ (M0M
ρ1
11M

ρ1ρ2
12 )ρ0

×
∑
u,x

PUX(u,x)

n∏
i=1

∑
y

W (y|xi)
(∑

u

QU (u)

(∑
x

Q(x|ui)
(
q(x, yi)

q(xi, yi)

)s′(ui) ea(ui,x)
ea(ui,xi)

)ρ′(ui))ρ0
, (D.25)

where
PUX(u,x) ,

∑
x1,x2

PU (u)PX1
(x1)PX2

(x2)11{x = Ξ(u,x1,x2)} (D.26)

If PUX were i.i.d. on QUX , then (D.25) would yield an error exponent which is positive when (230) holds with strict
inequality, by taking ρ0 → 0 similarly to Theorem 5. The same can be done in the present setting by upper bounding
PUX by a subexponential prefactor times QnUX , analogously to (D.18)–(D.19). More precisely, we have

PUX(u,x) ≤̇
∑
x1,x2

PU (u)Qn1

X|U=1(x1)Qn2

X|U=2(x2)11{x = Ξ(u,x1,x2)} (D.27)

= PU (u)QnX|U (x|u) (D.28)

≤̇ QnU (u)QnX|U (x|u) (D.29)

= QnUX(u,x). (D.30)

This concludes the proof.
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