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Universitat Pompeu Fabra

ICREA and University of Cambridge
guillen@ieee.org

Abstract—This paper provides an asymptotic expansion of the
error probability, as the codeword length n goes to infinity,
in quasi-static binary symmetric channels. After the leading
term, namely the outage probability, the next two terms are
found to be proportional to logn

n
and 1

n
respectively. Explicit

characterizations of the respective coefficients are given. The
resulting expansion gives an approximation to the random-coding
union bound, accurate even at small codeword lengths.

I. INTRODUCTION

In delay-constrained communication over slowly varying
channels, the channel parameters may stay constant over
the whole duration of the codeword. The capacity of this
nonergodic channel is zero for most channel distributions,
since the error probability cannot be made arbitrarily small
[1], [2]. The outage probability, i.e, the probability that the
intended rate exceeds the instantaneous mutual information of
the channel, and the outage capacity, i.e, the largest achievable
rate for a fixed outage probability, are the fundamental limits
in quasi-static channels [3].

For short codewords, a finer analysis is required to assess
the backoff from the outage probability and from the outage
capacity at any finite length n. In terms of rates, [4], [5]
showed that the achievable rates converge to the outage
capacity faster than 1√

n
. In terms of error probability, we

considered a weakened version of the random-coding union
(RCU) bound [6], [7] based on the Markov’s inequality, that
suggested a 1

n backoff from the outage probability.
In this work, we propose an approximation to the pairwise

error probability of the RCU based on the saddlepoint method
[8] that accurately captures the properties of nonsingular chan-
nels [9], [10]. In particular, we consider the simple quasi-static
binary symmetric channel (BSC), whose crossover probability
is a random variable that changes from codeword to codeword,
to closely approximate the RCU bound by

RCUn(R) ' Pout(R) +
log n

n
φlog(R) + φn(R)

1

n
, (1)

where Pout(R) is the outage probability, and φlog(R) and
φn(R) are terms that depend on the rate. We conjecture
that the first two terms in (1) also appear in the asymptotic
expansion of the optimal error probability.
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II. THE QUASI-STATIC BSC

We consider the transmission of M codewords of length
n over a binary symmetric channel (BSC) whose crossover
probability q remains constant for the duration of the code-
word and changes independently from codeword to codeword
according to the probability distribution pQ(q). We assume
that the crossover probability takes values in the interval
q ∈ (0, 12 ) and that pQ(q) is continuously differentiable. Under
the capacity achieving distribution PX(0) = PX(1) = 1

2 and
for any given q, the mutual information of the BSC is given by
I(q) = log 2−h(q), where h(q) = −q log q−(1−q) log(1−q)
is the binary entropy function.

For a fixed rate R = 1
n logM , random-coding arguments

show that the error probability averaged over the code en-
semble εn(R) satisfies limn→∞ εn(R) = Pout(R), where the
outage probability Pout(R) is given by

Pout(R) = P[I(q) < R]. (2)

Similarly, for a fixed error probability ε, the maximum achiev-
able rate Rn(ε) satisfies limn→∞Rn(ε) = Cout(R), where the
outage capacity Cout(ε) is related to Pout(R) through

Cout(ε) = sup {R : Pout(R) ≤ ε}. (3)

III. AN ERROR PROBABILITY EXPANSION

In order to derive (1), we study the random-coding union
(RCU) bound to the error probability for a fixed rate R and
codeword length n, i.e., we upper bound εn(R) by

RCUn(R) = E
[

min
{

1, (M − 1)ΦnQ(Xn, Y n)
}]
, (4)

where Φnq (xn, yn) is the pairwise error probability, i.e., the
probability that an independently randomly generated code-
word has a decoding metric that exceeds the decoding metric
of the true codeword, given by

Φnq (xnyn) = P
[
inq (X

n
; yn) ≥ inq (xn; yn)

]
, (5)

where inq (xn; yn) is the information density defined as

inq (xn; yn) =

n∑
i=1

log
Wq(yi|xi)

E
[
Wq(yi|Xi)

] . (6)

In (6), we used the fact that the channel input symbols are
identically and independently distributed (i.i.d.). For the BSC,



the transition probability distribution is Wq(y|x) = 1 − q for
x = y and Wq(y|x) = q for x 6= y. Hence,

inq (xn; yn) = n log(2− 2q) + d log
q

1− q
, (7)

where d = wH(xn⊕yn) is the Hamming distance between xn

and yn. Since the information density depends on the channel
input sequence and the channel output sequence only through
their Hamming distance d, we may indistinguishably write
inq (d) and Φnq (d).

A. Saddlepoint Approximation

Let ` = wH(xn ⊕ yn) be the Hamming distance between
xn and yn. From (7), we observe that inq (`) lies in a lattice of
span γ = log 1−q

q . The tail probability (5) can be written in
terms of the inverse Laplace transformation [11] as

Φnq (d) =

d∑
`=0

γ

2πj

∫ τ̂+j πγ

τ̂−j πγ
eκ(τ)−τi

n
q (`) dτ, (8)

where τ̂ is in the region of convergence, and κ(τ) is the
cumulant generating function of inq (`) for a fixed channel
output yn and crossover probability q, i.e.,

κ(τ) = logEXn
[
eτi

n
q (X

n
;yn)
]
. (9)

Under the capacity achieving distribution, it is given as

κ(τ) = nτ log(2− 2q) + n log

(
1

2
+

1

2

(
q

1− q

)τ)
. (10)

We note that κ(τ) does not depend on yn. We now approx-
imate the complex integration in (8) by extending the limits
of the integration and by expanding the cumulant generating
function κ(τ) around τ̂ , i.e.,∫ τ̂+j πγ

τ̂−j πγ
eκ(τ)−τi

n
q (`) dτ '∫ τ̂+j∞

τ̂−j∞
eκ(τ̂)+κ

′(τ̂)(τ−τ̂)+ 1
2κ
′′(τ̂)(τ−τ̂)2−τinq (`) dτ, (11)

where κ′(τ) and κ′′(τ) are the fist and second derivatives of
κ(τ), respectively. With the change of variable τ = τ̂ + jτi,
equation (11) can be expressed as∫ τ̂+j πγ

τ̂−j πγ
eκ(τ)−τi

n
q (`) dτ '

eκ(τ̂)−τ̂ i
n
q (`)

∫ ∞
−∞

e−jτi(i
n
q (`)−κ

′(τ̂))− 1
2κ
′′(τ̂)τ2

i jdτi. (12)

Solving the integral in τi and putting the resulting expression
of (12) back into (8), we obtain the following saddlepoint
approximation to the pairwise error probability

Φnq (d) ' eκ(1)−i
n
q (d)√

2πκ′′(1)
'

d∑
`=0

γ e
−(inq (`)−i

n
q (d))−

(inq (`)−κ′(1))2

2κ′′(1) ,

(13)

where we have chosen τ̂ = 1.

From (10), we have the following equalities

κ(1) = 0 (14)
κ′(1) = n log(2− 2q)− nqγ (15)

κ′′(1) = nq(1− q)γ2. (16)

We note that the identity in (14) is direct a consequence of
the definition of information density. Neglecting the (inq (`)−
κ′(1))2 terms in (13) would lead to [9, Eq. (131)], an approx-
imation to the RCU that is not refined enough for quasi-static
channels since the error probability converges to the outage
probability and not to zero.

Combining the following equalities

inq (`)− inq (d) = γ(d− `) (17)

inq (`)− κ′(1) = γ(nq − `) (18)

with (14)–(16), (13) can be written as

Φnq (d) ' e−i
n
q (d)√

2πnV (q)

d∑
`=0

γe−γ(d−`)−
γ2(nq−`)2

2nV (q) , (19)

where V (q) = q(1 − q)γ2 coincides with the variance of the
information density thanks to the symmetry of the channel.

B. Asymptotic Expansion

Directly plugging the saddlepoint approximation (19) into
the RCU (4) , we obtain

RCUn(R) ' E
[

min

{
1,
M − 1√

n
knQ(D)e−i

n
Q(D)

}]
, (20)

where the pre-exponential factor knq (d) has been defined as

knq (d) =
1√

2πV (q)

d∑
`=0

γe−γ(d−`)−
γ2(nq−`)2

2nV (q) . (21)

We note that d, the Hamming distance between xn and yn, has
a binomial distribution of n trials with probability of success
q. Hence, the expectation in (20) is w.r.t. the joint probability
distribution pDQ(d, q) = pQ(q)pD|Q(d|q) where

pD|Q(d|q) =

(
n

d

)
(1− q)(n−d)qd. (22)

Let U be a random variable uniformly distributed in the unit
interval. Then, for any random variable A, E[min{1, A}] =
P[A ≥ U ]. Using this identity on (20), taking logarithms inside
the probability and multiplying every term by 1

n , the RCU
bound can be expressed as the following tail probability

RCUn(R) ' P
[
R− 1

n
inQ(D)

+
1

n

(
log knQ(D)− 1

2
log n− logU

)
≥ 0

]
, (23)

where we also used that 1
n log(M − 1) ' R.

We note that as n→∞, the term R− 1
n i
n
q (d) does not tend

to zero, and measures the probability that the intended rate R
exceeds the normalized information density of the channel for
fixed length n. An expansion to (23) was partially addressed



in [6], [7] for a weakened version of the RCU bound based
on the Markov’s inequality and the inverse Laplace method,
and a similar tail probability was also addressed in [5], [12]
for the meta-converse and κβ bounds. Yet, we propose a third
method to expand the RCU bound as follows.

First, we write (23) as

RCUn(R) ' P
[
An +

1√
n
Bn +

1

n
Cn ≥ 0

]
(24)

where the random sequences An, Bn and Cn are given by

An = R− I(Q) (25)

Bn =
√
nI(Q)− 1√

n
inQ(D) (26)

Cn = log knQ(D)− 1

2
log n− logU. (27)

By writing the tail probability in (24) in terms of the indicator
function as E[1{An + νBn + ν2Cn ≥ 0}], finding the Taylor
series around 1√

n
= 0, and using that the derivative of the

indicator function is a Dirac delta function, we obtain (28) at
the bottom of the page, where δ(x) is the Dirac delta function,
and δ′(x) is its derivative. In the following, we study the four
terms of the right hand side of (28).

The first term leads to the outage probability, i.e.,

P[An ≥ 0] = P
[
R− I(Q) ≥ 0

]
(29)

= Pout(R). (30)

The second term, the convergence to the outage probability
in 1√

n
, is strictly zero, since

E[δ(An)Bn]

= E
[
δ
(
R− I(Q)

)(√
nI(Q)− 1√

n
inQ(D)

)]
(31)

= E
[
δ
(
R− I(Q)

)(√
nI(Q)−

√
nI(Q)

)]
(32)

= 0, (33)

where we used that the expectation of inQ(D) w.r.t. the
conditional probability distribution PD|Q leads to nI(Q).

To evaluate the remaining terms, we make use of the fol-
lowing identities on the Dirac delta function and its derivative
[13, pp. 184–185]∫

δ
(
f(x)

)
g(x) dx =

∑
x0 : f(x0)=0

g(x0)

|f ′(x0)|
(34)

∫
δ′
(
f(x)

)
g(x) dx = −

∑
x0 : f(x0)=0

1

|f ′(x0)|
∂

∂x

g(x)

f ′(x)

∣∣∣∣
x=x0

.

(35)

Hence,

E[δ′(An)B2
n]

= E
[
δ′
(
R− I(Q)

)(√
nI(Q)− 1√

n
inQ(D)

)2]
(36)

= E
[
δ′
(
R− I(Q)

)
V (Q)

]
(37)

= E
[
δ′
(
R− I(Q)√

V (Q)

)]
(38)

= −p′R−I(Q)√
V (Q)

(0), (39)

where V (Q) is the variance of the information density. The
term in (39), the derivative of the probability density function
of a normalized rate, was also identified in [12, Eq. (115)].

Finally, the fourth term of the right hand side of (24) is the
contribution of the three terms of Cn, given in (27), i.e.,

E[δ(An)Cn]

= E

[
δ
(
R− I(Q)

)(
log knQ(D)− 1

2
log n− logU

)]
(40)

= pR−I(Q)(0)

(
E
[

log knq0(D)
]
− 1

2
log n+ 1

)
, (41)

where the expectation in (41) is w.r.t. the conditional distribu-
tion PD|Q=q0 , q0 is the unique solution to I(q0) = R, and
pR−I(Q) is the probability density function of the random
variable R − I(Q). We also used that E[logU ] = −1,
and further note that the expectation of the random variable
log knq (D) has to be numerically evaluated.

Placing the probabilistic results obtained in this section,
namely equations (30), (33), (39) and (41), back into the
expansion (28) given at the bottom of the page, we obtain
that the RCU bound to the error probability expands as

RCUn(R) ' Pout(R) +
log n

n
φlog(R) +

1

n
φn(R), (42)

where the logn
n term is

φlog(R) = −1

2
pR−I(Q)(0), (43)

and the 1
n term is given by

φn(R) = pR−I(Q)(0)
(

1 + E
[

log knq0(D)
])
− 1

2
p′R−I(Q)√

V (Q)

(0),

(44)
where q0 is the crossover probability satisfying I(q0) = R,
and the expectation in (44) is w.r.t. the conditional probability
distribution PD|Q=q0 , given by (22).

P
[
An +

1√
n
Bn +

1

n
Cn ≥ 0

]
' P[An ≥ 0] +

1√
n
E[δ(An)Bn] +

1

2n
E[δ′(An)B2

n] +
1

n
E[δ(An)Cn] (28)
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Fig. 1. Expansion terms Pout(R), φlog(R) and φn(R), for n = 105.

By expanding Pout(R) around R = Cout(ε) in (42), it can
be seen that the achievable rate expands as

Rn(ε) ' Cout(ε) +
1

2

log n

n
, (45)

which coincides with the third-order term of the normal
approximation of the BSC [14, Eq. (289)].

IV. NUMERICAL RESULTS

In this section, we consider a uniformly distributed
crossover probability within q ∈ (0, 12 ).

The RCU for the BSC (4)–(7) can be computed analytically
[14, Eq. (162)]. Averaging it over q, we obtain

RCUn(R) =

n∑
t=0

(
n

t

)
2B 1

2
(1 + t, 1 + n− t)

min

{
1, (M − 1)

t∑
k=0

(
n

k

)
2−n

}
, (46)

where Bz(a, b) is the incomplete Beta function.
Let g(q) be

g(q) =
R− log 2 + h(q)√
q(1− q) log 1−q

q

, (47)

and let g′(q) and g′′(q) be its respective first and second
derivative. Then, for q0 = h−1(log 2−R), the following terms
of expansion (42) can be analytically computed as

Pout(R) = 1− 2q0 (48)

φlog(R) =
1

log( q0
1−q0 )

(49)

φn(R) =
g′′2 (q0)

g′2(q0)3
+

2 + 2
∑n
d=0 pD|Q(d|q0) log knq0(d)

log( 1−q0
q0

)
. (50)

For sake of comparison, we also include an expansion of
the RCU neglecting the third term, i.e.,

RCUn(R) ' Pout(R) +
log n

n
φlog(R). (51)
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Fig. 2. Error probability versus codeword length n for R = 1
10

log 2.

The behavior of the three terms of the expansion, namely
Pout(R), φlog(R) and φn(R), is illustrated in Fig. 1 as a func-
tion of the rate R, whereas we compare the derived expansion
(42) with the exact RCU (46) and the partial expansion (51),
at a rate R = 1

10 log 2, in Fig. 2. It can be appreciated that the
resulting expansion is an accurate approximation to the RCU,
even at short codeword lengths, even though it fails to capture
the ripples of the RCU (see [14, Fig. 2]), as both φlog(R)
and φn(R) are asymptotic terms.
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