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ICREA and Universitat Pompeu Fabra

University of Cambridge
guillen@ieee.org

Abstract—Saddlepoint approximations to the pairwise error
probability and to the random coding union bound are derived
for the cost-constrained random coding ensemble. For the special
case of the AWGN channel, an alternative expression to approx-
imate the Shannon bound for optimal spherical codes is found.

I. INTRODUCTION

Conceived by Shannon [1], the idea of random coding has
been one of the main proof techniques in information theory.
By generating a code ensemble whose codewords are i.i.d.
distributed, the average performance of such ensemble guar-
antees the existence of a code with vanishing error probability
as long as the code rate is smaller than the mutual information.

Many applications require codewords to satisfy a cost
constraint, such as a maximum transmitted power [2, Ch.
7]. Under cost-constrained random coding, codewords are
generated according to a cost conditioned distribution. This
is similar to the idea of constant-composition codes where all
codewords have the same empirical distribution [3]. Both cost-
constrained and constant-composition ensembles may lead to
performance gains over the i.i.d. ensemble [4]–[6].

In this work, we study saddlepoint approximations to the
cost-constrained random coding error probability. For a fixed
coding rate R below the channel capacity, the cost-constrained
random coding error exponent E(R) provides a first approxi-
mation of the error probability as e−nE(R) [2], where n is the
code length. Saddlepoint approximations [7] aim at finding a
more refined approximation of the form αne

−nE(R), where
αn is a subexponential factor. Such characterization has been
recently addressed by [8]–[10] for the unconstrained case.

For the cost-constrained ensemble, we derive an estimate
of αn valid under some non-lattice conditions, and for rates
above the critical rate. We later consider the particular case of
shell input AWGN channel, and revisit the Shannon bounds
on the performance of optimal spherical codes [11].

II. COST-CONSTRAINED RANDOM CODING

We consider a random coding ensemble in which codewords
are drawn from a cost-constrained distribution Pn(x) given by

Pn(x) =
1

µn

n∏
i=1

Q(xi)1 {x ∈ Dn} , (1)
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where µn is a normalizing factor, Q(x) is a given distribution,
1{·} is the indicator function, and Dn is a cost-constraint set

Dn = {x : δ1 ≤ cn(x) ≤ δ2} . (2)

In (2), cn(x) =
∑n
i=1 c(xi) is a cost function satisfying

EQn [cn(X)] = 0, and we assume that δ1 and δ2 are constants
independent of n. Since (1) is a probability distribution, it
follows that µn = PQn [X ∈ Dn].

For every message m, equiprobably distributed over the
set {1, . . . ,M}, a codeword xm is independently generated
according to (1). A codeword xm is transmitted through a
memoryless channel characterized by the transition probability
Wn(y|xm). For a given codebook, let εn(x1, . . . ,xM ) be the
probability of having an error with maximum likelihood (ML)
decoding. Then, random coding arguments prove the existence
of a code with a vanishing error probability as good as, at
least, the average error probability over the ensemble, denoted
as εn(M) = EPn [εn(X1, . . . ,XM )].

III. SADDLEPOINT APPROXIMATIONS

Using the union bound, the random coding error probability
εn(M) is upper bounded [12] by εn(M) ≤ rcu(M), where the
random coding union (RCU) bound is given by

rcu(M) = EPnWn

[
min {1, (M − 1)pep(X,Y )}

]
, (3)

and the pairwise error probability pep(x,y) is the probability
that an independently generated codeword x has a larger
decoding metric than the transmitted codeword x, i.e.,

pep(x,y) = PPn
[
Wn(y|X) ≥Wn(y|x)

]
. (4)

We first provide a saddlepoint approximation to the pairwise
error probability (4), and then use this approximation to find
a second saddlepoint approximation to the RCU bound (3).

A. Pairwise Error Probability

The pairwise error probability (4) is the probability of the
error event En(x,y) given by

En(x,y) = {x : logWn(y|x) ≥ logWn(y|x)} , (5)

for fixed x and y. Then,

pep(x,y) = EPn
[
1
{
X ∈ En(x,y)

}]
(6)

=
1

µn
EQn

[
1
{
X ∈ Dn ∩ En(x,y)

}]
, (7)



where in (7) we have used the cost-constrained distribu-
tion (1)–(2). We define the random variables Z(x,y) =
logWn(y|X)−logWn(y|x) and V = cn(X). For a strongly
non-lattice two-dimensional random variable (Z(x,y), V ),
and using the definitions of Dn and En(x,y), equation (7)
can be written as

pep(x,y) =
1

µn

∫ ∞
0

dz

∫ δ2

δ1

dv p(z), (8)

where we have defined the column vector z = (z, v)T for
convenience, and p(z) is the jowiint probability density func-
tion of Z(x,y), V . Using the inverse Laplace transformation
[13], we may write p(z) as

p(z) =

(
1

2πj

)2 ∫ τ̂+j∞

τ̂−j∞
dτ

∫ ω̂+j∞

ω̂−j∞
dω eκτω(x,y)−τ

T z, (9)

where κτω(x,y) is the joint cumulant generating function of
Z(x,y), V , given by κτω(x,y) = logEQn

[
eτZ(x,y)+ωV

]
,

and where τ = (τ, ω)T . For our particular Z(x,y) and V ,
κτω(x,y) is given by

κτω(x,y) = logEQn
[(

Wn(y|X)

Wn(y|x)

)τ
· eωc

n(X)

]
. (10)

We assume that τ̂ = (τ̂ , ω̂) is within the region of con-
vergence of the complex integration (9). Now, we perform a
Taylor expansion of κτω(x,y) around τ̂ , i.e.,

κτω(x,y) ' κτ̂ ω̂(x,y) + (τ − τ̂ )Tκ′τ̂ ω̂(x,y)+

+
1

2
(τ − τ̂ )Tκ′′τ̂ ω̂(y)(τ − τ̂ ), (11)

where κ′τω(x,y) and κ′′τω(y) are the gradient and the Hessian
matrix of κτω(x,y), respectively given by

κ′τω(x,y) =

[
∂
∂τ
∂
∂ω

]
κτω(x,y), (12)

κ′′τω(y) =

[
∂2

∂τ2
∂2

∂τ∂ω
∂2

∂ω∂τ
∂2

∂τ2

]
κτω(x,y). (13)

We note that κ′′τω(y) does not depend on x, as the term
Wn(y|x) in (10) is linear with τ . Plugging (11) into (9)
and making the change of variables τ̂ + jτi = τ and
ω̂ + jωi = ω, we obtain that the probability density function
p(z) is approximated as

p(z) ' eκτ̂ω̂(x,y)−τ̂
T z·

·
(

1

2π

)2 ∫ ∞
−∞

dτi

∫ ∞
−∞

dωi e
−jτTi zϕ(τ i), (14)

where ϕ(τ i) is the characteristic function of a bidimensional
normal distribution with mean κ′τ̂ ω̂(x,y) and covariance ma-
trix κ′′τ̂ ω̂(y), i.e.,

ϕ(τ i) = ejτ
T
i κ
′
τ̂ω̂(x,y)− 1

2τ
T
i κ
′′
τ̂ω̂(y)τ i . (15)

Hence, since ϕ(τ i) is integrable in R2, solving the integration
(14) leads to the saddlepoint approximation [14] of p(z), i.e.,

p(z) ' eκτ̂ω̂(x,y)−τ̂
T z·

·e
− 1

2 (z−κ
′
τ̂ω̂(x,y))

T (κ′′τ̂ω̂(y))
−1(z−κ′τ̂ω̂(x,y))√

(2π)2|κ′′τ̂ ω̂(y)|
, (16)

Since κ′τω(x,y) and κ′′τω(y), grow linearly with n, for
sufficiently large n we may neglect the terms in z in the
quadratic form in (16), i.e.,

p(z) ' eκτ̂ω̂(x,y)−τ̂
T z− 1

2κ
′
τ̂ω̂(x,y)

T (κ′′τ̂ω̂(y))
−1κ′τ̂ω̂(x,y)√

(2π)2|κ′′τ̂ ω̂(y)|
. (17)

Using the approximation (17) into (8), we obtain

pep(x,y) '
∫ ∞
0

dz

∫ δ2

δ1

dv
e−τ̂

T z

µn
·

·e
κτ̂ω̂(x,y)− 1

2κ
′
τ̂ω̂(x,y)

T (κ′′τ̂ω̂(y))
−1κ′τ̂ω̂(x,y)√

(2π)2|κ′′τ̂ ω̂(y)|
. (18)

Solving the integration w.r.t. z, we obtain that for a given
channel input x and channel output y, the pairwise error
probability (4) under the random coding ensemble (1) can be
approximated by

pep(x,y) ' γn(x,y) · eκτω(x,y), (19)

where we redefine ω = ω̂ and τ = τ̂ for notation clarity,
κτω(x;y) is the cumulant generating function (10), and γn(y)
is a subexponential related to (12) and (13) as

γn(x,y) =
e−ωδ1 − e−ωδ2

µnτω
· e
− 1

2κ
′
τω(x,y)

Tκ′′τω(y)
−1κ′τω(x,y)√

(2π)2|κ′′τω(y)|
.

(20)
We remark that (10) involves the expectation according to

the i.i.d. distribution Qn(x) =
∏n
i=1Q(x). We also note that

the optimal auxiliary parameters τ and ω would be chosen
as the unique minimizers of κτω(x,y), which would set
κ′τω(x,y) = 0 in the Taylor expansion (11) and in (20).
However, this requires one optimization for every x and y.
Instead, we let τ and ω be fixed for every x and y, at the cost
of having nonzero κ′τω(x,y) in γn(x,y).

As reported in [2], [5] for the power-constrained AWGN
channel, µn decays subexponentially in n, hence not affecting
the exponent. The saddlepoint approximation (19) states that
the pairwise error probability, under cost-constrained i.i.d. ran-
dom coding ensemble (1), decays exponentially as eκτω(x,y),
with a pre-factor γn(x,y). We note that κτω(x,y) =
−inτω(x;y) is the negative tilted information density

inτω(x;y) = log
Wn(y|x)τ

EQn
[
Wn(y|X)τeωcn(X)

] . (21)

B. Random Coding Union Bound

We start by using the identity E[min{1, A}] = P[A ≥ U ],
where U is a uniformly distributed random variable in the
[0, 1] interval, to write the rcu(M) as

rcu(M) = EPnWnF [1 {(X,Y , U) ∈ Rn}] (22)



where Rn is the set

Rn = {(x,y, u) : log(M − 1) + log pep(x,y) ≥ log u} ,
(23)

and F (u) is the uniform probability distribution. Using the
right hand side of (1), we further have that

rcu(M) =
1

µn
EQnWnF [1 {(X,Y , U) ∈ Rn,X ∈ Dn}] .

(24)
Similarly to Sec. III-A, we define the random variables Z =
log(M − 1) + log pep(X,Y ) − logU and V = cn(X), and
use the definitions of Rn and Dn to write equation (24) for a
strongly non-lattice two-dimensional random variable, i.e.,

rcu(M) =
1

µn

∫ ∞
0

dz

∫ δ2

δ1

dv p(z), (25)

where z = (z, v)T , and p(z) is the joint probability density
function of (Z, V ), given by

p(z) =

(
1

2πj

)2 ∫ ρ̂+j∞

ρ̂−j∞
dρ

∫ λ̂+j∞

λ̂−j∞
dλ eχ(ρ,λ)−ρ

T z. (26)

Now, ρ = (ρ, λ)T , and χ(ρ, λ) = logEQnWnF [e
ρZ+λV ] is

the joint cumulant generating function of Z, V , i.e.,

χ(ρ, λ) = logEQnWnF

[
(M − 1)ρpep(X,Y )ρU−ρeλc

n(X)
]
.

(27)
Plugging the saddlepoint approximation (19) into (27), taking
log(M − 1) ' nR, and after some mathematical manipula-
tions, we obtain that

χ(ρ, λ) ' nρR− log(1− ρ)+

+ logEQnWn

[(
γn(X,Y )eκτω(X,Y )

)ρ
eλc

n(X)
]
. (28)

The saddlepoint approximation of the pairwise error prob-
ability was found by directly expanding the cumulant gener-
ating function (10), as both Z and V were the sum of n i.i.d.
random variables. This is not the case of χ(ρ, λ), as there are
terms in (28) that are not linear with n. It will prove convenient
to write equation (28) as

χ(ρ, λ) ' nρR+ logEQnWn

[
eρκτω(X,Y )eλc

n(X)
]
+

+ logEQnρλWn
ρλ

[
γn(X,Y )ρ

]
− log(1− ρ), (29)

where Qnρλ(x)W
n
ρλ(y|x) is the tilted distribution

Qnρλ(x)W
n
ρλ(y|x) =

1

νn
Qn(x)Wn(y|x)eρκτω(x,y)eλc

n(x),

(30)
being νn a normalization factor. Since log(1−ρ) and γn(x,y)
do not grow exponentially with n, we obtain that

lim
n→∞

1

n
χ(ρ, λ) = ρR− E0(ρ, λ), (31)

where

E0(ρ, λ) = lim
n→∞

− 1

n
logEQnWn

[
eρκτω(X,Y )eλc

n(X)
]
.

(32)

For a memoryless channel Wn(y|x) and i.i.d. input distri-
bution Qn(x), setting τ = 1

1+ρ and ω = λ, turns equation
(32) into Gallager’s E0 function for constrained inputs [2, Eq.
(7.3.43)] given by

E0(ρ, λ) = − log
∑
y

(∑
x

Q(x)W (y|x)
1

1+ρ eλc(x)

)1+ρ
. (33)

Defining

θn(ρ, λ) = EQnρλWn
ρλ

[
γn(X,Y )ρ

]
, (34)

the cumulant generating function (27) is of the form

χ(ρ, λ) ' nρR−nE0(ρ, λ)+log θn(ρ, λ)− log(1−ρ). (35)

Using (35) into (26), and then solving (25), we obtain that

rcu(M) =

(
1

2πj

)2 ∫ ρ̂+j∞

ρ̂−j∞
dρ

∫ λ̂+j∞

λ̂−j∞
dλ·

·e
−λδ1 − e−λδ2

µnλ
· e

nρR−nE0(ρ,λ)

ρ(1− ρ)
θn(ρ, λ). (36)

The saddlepoint approximation to the rcu(M) then involves
expanding ρR − E0(ρ, λ) around ρ̂ = (ρ̂, λ̂), the unique
minimizers such that

∂

∂ρ
E0(ρ, λ)

∣∣∣∣
ρ=ρ̂

= R, (37)

∂

∂λ
E0(ρ, λ)

∣∣∣∣
λ=λ̂

= 0. (38)

Therefore, around ρ̂, we find the expansion

ρR−E0(ρ, λ) ' ρ̂R−E0(ρ̂, λ̂)+
1

2
(ρ−ρ̂)TVρ̂λ̂(ρ−ρ̂), (39)

where Vρ̂λ̂, the cost-constrained dispersion matrix, is the
Hessian matrix of ρR− E0(ρ, λ), given by

Vρ̂λ̂ = −

[
∂2

∂ρ2
∂2

∂ρ∂λ
∂2

∂λ∂ρ
∂2

∂λ2

]
E0(ρ, λ)

∣∣∣∣∣
ρ=ρ̂,λ=λ̂

. (40)

The convergence of equation (36) highly depends on the
poles at ρ = 0, ρ = 1 and λ = 0. As discussed in [2,
Theorem 7.3.2], the error exponent of the constrained input
random coding ensemble is given by

E(R,Q) = inf
0≤ρ≤1,λ≥0

ρR− E0(ρ, λ). (41)

When 0 < ρ̂ < 1 and λ̂ > 0, this corresponds to rates R
between the critical rate R∗(Q), defined as the rate for which
E(R,Q) is achieved at ρ̂ = 1, and the mutual information
I(Q), given by

I(Q) = EQnWn

[
log

Wn(y|x)
EQn

[
Wn(y|X)

]] , (42)

for which ρ̂ = λ̂ = 0. For this range of ρ̂ and λ̂, the complex
integration (26) converges for any z, so that we can use the
Taylor expansion (39) to approximate (36). Conversely, if the
rate R is such that the parameter ρ̂ satisfying (37) lies outside



the (0, 1) interval, we need to shift the integration axis of ρ̂ at
the cost of introducing additional terms due to the Cauchy’s
residue theorem [13]. For sake of clarity, we consider the more
explanatory case of ρ ∈ (0, 1).

To solve (36), it is convenient to use the identity

1

ρ(1− ρ)
=

1

ρ
+

1

1− ρ
, (43)

and note that we can equivalently write (25) as

rcu(M) =
1

µn

∫ δ2

δ1

dv

(∫ 0

−∞
p1(z)dz +

∫ ∞
0

p2(z)dz

)
,

(44)
where the probability distributions p1(z) and p2(z) are re-
spectively given by

p1(z) =

(
1

2πj

)2 ∫ ρ̂+j∞

ρ̂−j∞
dρ

∫ λ̂+j∞

λ̂−j∞
dλ eζ(ρ,λ)+z−ρ

T z,

(45)

p2(z) =

(
1

2πj

)2 ∫ ρ̂+j∞

ρ̂−j∞
dρ

∫ λ̂+j∞

λ̂−j∞
dλ eζ(ρ,λ)−ρ

T z. (46)

being ζ(ρ, λ) ' nρR − nE0(ρ, λ) + log θn(ρ, λ). Using the
Taylor expansion (39) into (45) and (46), and following the
footsteps of the derivation of equations (14), (15) and (16),
we obtain the following saddlepoint approximations [14]

p1(z) ' eζ(ρ̂,λ̂)+z−ρ̂
T z · 1√

(2π)2|nVρ̂λ̂|
· e−

1
2nz

TV −1

ρ̂λ̂
z
,

(47)

p2(z) ' eζ(ρ̂,λ̂)−ρ̂
T z · 1√

(2π)2|nVρ̂λ̂|
· e−

1
2nz

TV −1

ρ̂λ̂
z
. (48)

Using the approximations (47) and (48) into (44) and defin-
ing the bidimensional integration intervals I1 = (−∞, 0) ×
(δ1, δ2) and I2 = (0,∞) × (δ1, δ2), we obtain that the
saddlepoint approximation of the random coding union bound
to the error probability (3) under the cost-constrained random
coding ensemble (1) is given by

rcu(M) ' αn · e−n(E0(ρ̂,λ̂)−ρ̂R), (49)

where the factor αn is found as

αn =
θn(ρ̂, λ̂)

µn

(∫
I1

dz
e
z−ρ̂T z− 1

2nz
TV −1

ρ̂λ̂
z√

(2π)2|nVρ̂λ̂|
+

+

∫
I2

dz
e
−ρ̂T z− 1

2nz
TV −1

ρ̂λ̂
z√

(2π)2|nVρ̂λ̂|

)
, (50)

and (ρ̂, λ̂) are the saddlepoints obtained from (37)–(38). In
(50), z is a bidimensional integration variable, Vρλ is the cost-
constrained dispersion matrix given by (40), and the parameter
θn(ρ̂, λ̂) is computed as (34), where γn(x,y) is given by (20)
with ω = λ̂ and τ = 1

1+ρ̂ and the expectation is under the
tilted distribution Qnρλ(x)W

n
ρλ(y|x) given in (30).

Computing αn involves solving two bidimensional integra-
tions, which can be done using standard numerical integration

packages. A simpler expression is obtained by further expand-
ing αn as n→∞. Neglecting the quadratic form 1

2nz
TV −1

ρ̂λ̂
z

in (50) to solve the bidimensional integrations, we obtain that
αn can be asymptotically approximated by

αn '
e−λ̂δ1 − e−λ̂δ2

µnλ̂ρ̂(1− ρ̂)
· θn(ρ̂, λ̂)√

(2π)2|nVρ̂λ̂|
. (51)

Clearly, for rates R satisfying R∗(Q) < R < I(Q), the sad-
dlepoint approximation (49) recovers the correct exponential
decay of the error probability, i.e. (41). Furthermore, since
|κ′′τω(y)| and |nVρλ| both grow as n2, and µn decays as
1√
n

[5], it follows that αn in the expansion (51), and hence
also the cost-constrained random coding error probability (49),
have a polynomial decay of n−

1+ρ̂
2 , exactly the same as the

unconstrained case [9, Eq. (134)].

IV. AWGN CHANNEL WITH SPHERICAL CODES

We numerically evaluate the saddlepoint approximation (49)
for the shell input AWGN channel, where codewords satisfy∑n
i=1 x

2
i = nP , being P the power, and the AWGN channel

transition probability is given by

Wn(y|x) =
n∏
i=1

1√
2πσ2

e−
(yi−xi)

2

2σ2 , (52)

being σ2 the noise power. We define the signal-to-noise ratio
(SNR) as snr = P

σ2 . Shannon gave an expression for the exact
RCU bound based on packing spheral cones [11, Eq. (19)],
whose accurate computation is challenging, and an asymptotic
approximation for large n, given by [11, Eq. (5)].

In order to map our model into the AWGN channel with
spherical coding, we consider the function cn(x) =

∑n
i=1 x

2
i−

nP , and the set Dn = {x : nP − δ ≤
∑n
i=1 xi ≤ nP},

corresponding to δ1 = −δ and δ2 = 0 in (2). We further
consider the distribution

Qn(x) =

n∏
i=1

1√
2πP

e−
x2

2P . (53)

Under this setting, µn ' δ√
4πnP 2

[2, Eq. (7.3.29)].
Particularizing our expressions, and taking the limit as

δ → 0 to constrain our code to be spherical, we obtain that
the random coding union (RCU) bound can be approximated
as (49) where the Gallager function E0(ρ, λ) is

E0(ρ, λ) = λP (1 + ρ) +
1

2
log(1− 2λP )+

+
ρ

2
log

(
1− 2λP +

snr

1 + ρ

)
, (54)

and αn is given by

αn = θn(ρ̂, λ̂)

√
2P 2V −122 ·

·
(
erfcx

(
(1− ρ̂)

√
V −122 n|Vρ̂λ̂|

)
+ erfcx

(
ρ̂
√
V −122 n|Vρ̂λ̂|

))
.

(55)



In (55), erfcx(t) is a modified Gaussian error function given
by erfcx(t) = sign(t) 12erfc

( |t|√
2

)
e
t2

2 , V22 is given by

V22 = − ∂2

∂λ2
E0(ρ, λ)

∣∣∣∣
(ρ,λ)=(ρ̂,λ̂)

, (56)

and θn(ρ̂, λ̂) can be computed in closed-form from equations
(34), (20) and (30), where κτω(x,y) is given by

κτω(x,y) = −
1

2

(1− 2ωP )τ

(1− 2ωP )σ2 + Pτ
‖y‖2 − ωnP+

+
τ

2σ2
‖y − x‖2 − n

2
log (1− 2ωP + τ snr) . (57)

The expression of θn(ρ̂, λ̂), cumbersome and not particularly
informative, is not included for the sake of space limitations.

Either expanding (55) as n→∞, or evaluating (51) as δ →
0, we obtain that the saddlepoint approximation asymptotically
behaves as (49), where the Gallager function E0(ρ, λ) is given
by (54), and now αn is given by

αn '
θn(ρ̂, λ̂)

ρ̂(1− ρ̂)
√
πnP−2|Vρ̂λ̂|

. (58)

We have derived two approximations of the RCU bound
for the shell input AWGN channel, both of the form (49). We
denote the approximation by RCU (saddlepoint) for αn given
by (55), and RCU (asymptotic) for αn is given by (58). Figure
1 shows our two approximations, together with the exact Shan-
non bound [11, Eq. (19)], and the asymptotic Shannon bound
[11, Eq. (5)]. We choose a rate R at 90% of I(Q) = 1.0286
bits/channel use, satisfying R∗(Q) < R < I(Q), where

I(Q) =
1

2
log
(
1 + snr

)
, (59)

R∗(Q) =
1

2
log

(
snr

4
+

1

2

√
snr2

4
+ 1 +

1

2

)
. (60)

For completeness, we also include the Shannon lower bound
[11, Eq. (15)]. As it can be seen from the figures, all curves
are very close to each other.

A more informative parameter is the fourth-order term of
the error probability expansion, denoted as βn

rcu(M) ' βn√
n1+ρ̂

· e−n(E0(ρ̂,λ̂)−ρ̂R), (61)

and shown in Figure 2. The numerical results suggest that the
saddlepoint approximation (49) with αn in (55) is an alter-
native expression for the asymptotic Shannon bound [11, Eq.
(5)] . The main advantage of our saddlepoint approximation is
that it is applicable to cost-constrained memoryless channels
under some strongly non-lattice conditions.
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