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Abstract—This paper proposes a new method to reduce the
error rate of channel codes over an AWGN channel by renormal-
izing the codewords to a constant energy before transmission and
decoding with the original codebook. Evaluation of the random-
coding error exponent reveals that this normalization technique
approaches the constant-composition error exponent for certain
pairs of rate and signal-to-noise ratio.

I. INTRODUCTION

Given a general coded modulation scheme over an AWGN
channel, we investigate the effect on the error rate of rescaling
the transmitted codewords so that their energy is constant.
We compare the proposed technique with the standard coded
modulation scheme and with constant-composition codes [1],
[2] by means of the respective random-coding error exponents.

The comparison reveals that, for low to moderate SNRs,
codeword rescaling significantly improves the error exponent of
random codes and nearly matches the performance of constant-
composition codes. While constant-composition codes, which
inherently have fixed codeword energy and are known to
achieve the optimum exponent, are difficult to design in
practice, codeword rescaling can be applied to existing practical
codes without increasing their complexity.

In Sect. II we present the general channel coding model. In
Sect. III we add codeword rescaling to the model and derive an
achievable random-coding exponent. In Sect. IV we introduce
two other well known random-coding exponents and compare
them with the new one by numerical evaluation.

II. MODEL

The channel input sequence x = (x1, . . . , xn) consists of
n symbols x ∈ X , where X is the symbol constellation. We
denote the channel output sequence by y and the channel
law, that is, the conditional probability density of receiving
sequence y when the sequence x has been sent, by Wn(y |x).
We represent random variables by capital letters and their
realizations by lowercase letters, e.g. X = (X1, . . . , Xn) and
Y = (Y1, . . . , Yn) denote random input and output vectors.
The channel is memoryless and Wn(y |x) =

∏n
i=1W (yi |xi),

where W (y |x) is the single-letter channel law.
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We focus on a complex-valued additive white Gaussian noise
(AWGN) channel. The input alphabet X is a finite subset of
the complex numbers and the channel output is given by

yi =
√

SNRxi + zi , i = 1, . . . , n (1)

where xi are the symbols, yi the channel output values and
SNR is the signal-to-noise ratio. The noise values zi are drawn
from a circularly-symmetric complex-valued Gaussian random
variable with zero mean and unit variance. Therefore, the
symbol channel transition probability is given by

W (y |x) =
1

π
e−|y−

√
SNRx|2 . (2)

The empirical average symbol energy of channel input
sequence x is E(x) = 1

n

∑n
i=1|xi|

2. Let Q be a distribution
on the symbols in X . We require that the constellation X is
chosen such that the identities IE[X] = 0 and IE[|X|2] = 1
hold, where the expectations are with respect to Q.

We use P[A] to denote the probability of an event A, and
IE[·] is the expectation operator. We denote the Kullback-
Leibler Divergence as D(P‖Q), the set of all compositions
on length-n sequences drawn from X as Pn, the set of all
distributions on X as P and the image of set A under the
function f as f [A].

We denote the channel code by Cn. The code consists of M
codewords x, i.e. Cn = {x(1), . . . ,x(M)}, and the correspond-
ing code is said to be an (n,M) block code of block length
n. The encoder assigns to each message m ∈ {1, . . . ,M} a
codeword x(m) from the codebook Cn. We assume that the
message m is drawn according to a uniform distribution. The
rate of a code is defined as R , log2M

n .
The decoder outputs an estimated message m̂ according to

a maximum-metric rule

m̂ = arg max
i∈M

qn(x(i),y), (3)

where qn denotes the metric that the decoder uses to estimate
which message m has been sent. We focus on metrics qn

that can be expressed in terms of the letter metric q as in
qn(x,y) =

∏n
i=1 q(xi, yi). Further, we require q to be positive.

An error occurs if the decoder’s estimate differs from the
sent message, i.e. m̂ 6= m. The error probability of a code Cn is
pe(Cn) = 1

M

∑
m∈MP[m̂ 6= m |m], and we equivalently write

pe(n,M) = pe(Cn). Finally, an error exponent E(Q,R) is

International Zurich Seminar on Communications (IZS), March 2 – 4, 2016

170



said to be achievable if there exists a sequence of (n,M)-codes
Cn such that

lim inf
n→∞

− 1

n
log pe(Cn) ≥ E(Q,R). (4)

III. CODEWORD RESCALING

A. Rescaling setup

Let a rescaler η be a block that performs the operation

η(x) = E(x)−
1
2x (5)

on a codeword x; that is, it renormalizes the codeword x such
that the empirical codeword energy is E

(
η(x)

)
= 1.

We consider a coded modulation scheme that consists of
an encoder and a rescaler η. The encoder maps message m
into codeword x(m) = φ(m) using codebook C, the rescaler
outputs an energy-normalized version x̃(m) of the codeword
x(m). The rescaling operation can be thought as part of the
encoder’s codebook, so that we use a code C̃ with rescaled
codewords x̃ that consist of symbols x̃ from an expanded
constellation X̃ .

The decoder outputs the estimate m̂ under the original
codebook C by maximizing the metric qn. With the choice
of qn(x,y) = Wn(y |x), we have an instance of mismatched
decoding, since the decoder does not account for the rescaling
operation neither in the codebook C nor in the decoding
metric. We consider a slightly more general choice given
by qn(x,y) , Wn(y |βx), where β may be optimized to
minimize the error probability; however, it cannot depend on
the codeword, and hence it cannot be used to undo the rescaling.
Note that for a practical code, β is fixed before deployment and
such a decoding metric can be implemented without additional
computational complexity.

We can build an equivalent model for the rescaling setup
by removing the rescaling block from the transmitter and
reinterpreting it as a channel property. With this model, the
scaling function leads to a new channel law

W̃n(y |x) = Wn(y | η(x)). (6)

Note that W̃n does not represent a memoryless channel.

B. Scaling exponent

We study the i.i.d. random-coding error probability. We
consider an ensemble of codebooks with block length n and
M = 2nR codewords. The ensemble consists of codebooks
whose codewords x(i), i = 1, . . . ,M are randomly generated.
A codeword x(i) = (x1, . . . , xn) at entry i in the random
codebook is generated by drawing its n symbols according
to the distribution Q(x). We are interested in the achievable
random-coding exponent Escl

r (Q,R) of the ensemble average
of the error probability pe(n,M) =

∑
Cn P[Cn]pe(Cn).

Theorem 1 (Scaling random-coding exponent): The random-
coding error probability in a rescaling setup satisfies

lim
n→∞

− 1

n
log2 pe(n, 2

nR) ≥ Escl,β
r (Q,R), (7)

where the scaling exponent is defined as

Escl,β
r (Q,R) , sup

β≥0
min
P∈P

sup
ρ∈[0,1]
s≥0

{
Escl,β

0 (Q, ρ, s, P )− ρR
}
,

(8)
and the corresponding Escl,β

0 is defined as

Escl,β
0 (Q, ρ, s, P )

, D(P‖Q)− IE

log2 IE

[
IE[q(X̄, Y )s |Y ]

ρ

q(X,Y )ρs

∣∣∣∣∣X
] (9)

and the expectations are with respect to

(X,Y, X̄) ∼ P (x)W
(
y | E(P )−

1
2x
)
Q(x̄). (10)

Proof: For the ensemble of codebooks with M codewords
of length n, chosen according to random-coding distribution
Qn, transmitted over a channel described by the arbitrary
channel law Wn and decoded according to the metric qn, the
average ensemble error probability is bounded by the random-
coding union (RCU) bound [4], [5]

rcu(n,M)

= IE

min

{
1, (M − 1) P

[
qn(X̄,Y )

qn(X,Y )
≥ 1

∣∣∣∣X,Y

]},
(11)

where (X,Y , X̄) ∼ Qn(x)Wn(y |x)Qn(x̄).
Weakening (11) by replacing the function z 7→ min{1, z}

with the function z 7→ zρ(x) and using Markov’s inequality
with parameter s(x), leads to the definition of a parametrized
upper bound on the the RCU bound

rcuρ,s(n,M) , IE

[(
IE[qn(X̄,Y )s(X) |X,Y ]

qn(X,Y )s(X)(M − 1)−1

)ρ(X)
]

(12)

that holds for all pairs of functions
(
ρ(x), s(x)

)
such that

ρ[Xn] ⊆ [0, 1] and s[Xn] ⊆ [0,∞).
We further weaken (12) by applying M − 1 ≤ 2nR, use

the random-coding distribution Qniid =
∏n
i=1Q(xi) and the

equivalent scaling channel model (6), to obtain

pe(n,M) ≤
∑

x∈Xn
2nρ(x)RQniid(x)fn(ρ(x), s(x),x), (13)

where

fn(ρ, s,x)

,
∫
y

W
(
y | E(x)−

1
2x
)( ∑

x̄∈Xn
Qniid(x̄)

qn(x̄,y)s

qn(x,y)s

)ρ
dy.

(14)

We split the outer summation over the channel-input se-
quences in (13) into summations over sequences x of compo-
sition P = P̂x and obtain

pe(n,M) ≤
∑
P∈Pn

2nρ(P )R
∑

x∈T (P )

Qniid(x)fn(ρ(P ), s(P ),x).

(15)
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We also reduced the degrees of freedom for the parameters
ρ(x) and s(x) such that they only depend on the composition
P = P̂x. This simplifies the analysis.

The codeword average symbol energy only depends on the
codewords composition. Hence we write E(x) = E(P̂x) and
use it in (14) to obtain fn(ρ, s, P,x). This, together with the
product nature of decoding metric, channel law andQniid, allows
us to factor fn as fn(ρ, s, P,x) =

∏n
i=1 f(ρ, s, P, xi), where

f(ρ, s, P, x) ,
∫
y

W
(
y | E(P )−

1
2x
)(∑

x̄∈X
Q(x̄)

q(x̄, y)s

q(x, y)s

)ρ
dy,

(16)
by invoking the distributive law. For the product in fn, only
the composition of x is relevant, that is, it can be expressed
independent of x as fn(ρ, s, P ) =

∏
x∈X f(ρ, s, P, x)nP (x).

We use this form in (15) to obtain

pe(n,M)

≤
∑
P∈Pn

∑
x∈T (P )

2nρ(P )R
∏
x∈X f(ρ(P ), s(P ), P, x)nP (x)

2n
(
D(P‖Q)+H(P )

) ,

(17)

where we expressed the codeword probability in terms of its
composition as in Qniid(x) = 2−n(D(P̂x‖Q)+H(P̂x)) [6].

Since the summand is independent of the codeword x in
(17), we can upper-bound the summation over the codewords by
using the bound on the number of sequences in a composition
class |T (P )| ≤ 2nH(P ) [6]. Doing some rearrangements and
bringing all terms on a common exponent base, we obtain

pe(n,M) ≤
∑
P∈Pn

2−nξ(ρ(P ),s(P ),P,R), (18)

where

ξ(ρ, s, P,R) , D(P‖Q)−
∑
x∈X

P (x) log2 f(ρ, s, P, x)− ρR.

(19)
A simple upper bound on a sum is obtained by fixing its sum-

mands to the largest one, that is
∑
a∈A a ≤ |A|(maxa∈A a).

We weaken (18) with this bound and the fact that the number
of compositions is bounded by |Pn| ≤ (n+ 1)|X | [6] and get

pe(n,M) ≤ (n+ 1)|X | 2−n
[
minP∈Pn ξ(ρ(P ),s(P ),P,R)

]
. (20)

The bound (20) is achievable for any pair of parameters(
ρ(P ), s(P )

)
, which we exploit by choosing them such that

the bound gets as tight as possible. By definition of the min
and sup operators, this is the case when we replace ξ with

ξ∗(P,R) = sup
0≤ρ≤1,s≥0

ξ
(
ρ, s, P,R

)
. (21)

That is, place the supremum inside the minimum operator.
Finally, we observe the sub-exponential factor in (20) which

suggests to transform the inequality as

− 1

n
log2 pe(n, 2

nR) ≥ min
P∈Pn

ξ∗(P,R)− |X | log2(n+ 1)

n
(22)

and take the limit

lim
n→∞

− 1

n
log2 pe(n, 2

nR) ≥ min
P∈P

ξ∗(P,R). (23)

C. Swapped exponent

An inspection by example of the optimization parameters
in (8) shows that Escl,β

0 is not convex in P for fixed values
of ρ, s and R, which complicates its numerical computation.
Further, note that it is crucial to find the true P ∗ to guarantee
the achievability of Escl,β

r , since P ∗ is the result of a min-
imization over a variable that is not an arbitrary parameter.
For these reasons, we introduce a lower bound on (8) that is
computationally tractable.

Theorem 2 (Swapped scaling random-coding exponent): The
swapped random-coding error exponent, defined as

Eswp,β
r (Q,R) , sup

β≥0
min
ε∈S

sup
ρ∈[0,1]
s≥0

{
Eswp,β

0 (Q, ρ, s, ε)− ρR
}

(24)
with

Eswp,β
0 (Q, ρ, s, ε)

, min
P∈Pε

D(P‖Q)− IE

log2 IE

[
IE[q(X̄, Y )s |Y ]

ρ

q(X,Y )ρs

∣∣∣∣∣X
]
,

(25)

is a lower bound on Escl,β
r , where ε is optimized over

the interval S = [minx∈X |x|2,maxx∈X |x|2], the set Pε is
{P ∈ P | E(P ) = ε} and the expectations are according to
(X,Y, X̄) ∼ P (x)W (y | ε− 1

2x)Q(x̄).
Proof: First, let the energy level ε denote the expected

symbol energy with respect to P or equivalently ε = E(P ).
We observe that the probability simplex P can be partitioned
into disjoint subsets Pε, where a subset consists of all dis-
tributions P that obtain the energy level ε, that is, we have
P =

⋃
ε∈S Pε where Pε = {P ∈ P | E(P ) = ε} and

S = [minx∈X |x|2,maxx∈X |x|2]. The subsets Pε are compact
and convex since they are intersections of two hyperplanes and
the closed positive orthant [7]. In correspondence with these
observations, we rephrase the scaling exponent (8) in terms of
energy levels and subsets as

Escl,β
r (Q,R) = min

ε∈S
min
P∈Pε

sup
ρ∈[0,1]
s≥0

{
Escl,β

0 (Q, ρ, s, P )− ρR
}
.

(26)
We swap the order of the inner two optimization operators

and define Eswp,β
r and Eswp,β

0 as in (24) and (25) respectively.
Observing that the minimax inequality

sup
x

min
y
f(x, y) ≤ min

y
sup
x
f(x, y) (27)

holds we conclude that swapping the order of optimization
results in a lower bound on (8).
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Fig. 1. Random-coding error exponents for 16QAM and fixed SNRs of 5 dB
and 10 dB, respectively.

IV. NUMERICAL RESULTS

We are interested in how the error exponent of channel-
coding with rescaling performs with respect to setups with the
iid and constant-composition exponents [1], [2].

For a discrete-input continuous-output memoryless channel
with ML decoder and input distribution Q, the iid exponent is
given by [1]

Eiid
r (Q,R) = max

ρ∈[0,1]
Eiid

0 (ρ)− ρR, (28)

where

Eiid
0 (Q, ρ) , −log2

∫
y

IE
[
W (y |X)

1
1+ρ

]1+ρ

dy (29)

is the Gallager function [3]. The expectation is taken with
respect to Q.

For a discrete-input continuous-output memoryless channel
with ML decoder and input distribution Q, the constant-
composition exponent is given by [4]

Ecc
r (Q,R) = max

ρ∈[0,1]
Ecc

0 (ρ)− ρR, (30)

where

Ecc
0 (Q, ρ) , sup

a(·)
−log2

∫
y

IEQ

[
W (y |X)

1
1+ρ ea(X)−φa

]1+ρ

dy

(31)

and φa = IEQ[ a(X) ], and the optimization in (31) is over
all real-valued functions a. The expectations are taken with
respect to (X,Y, X̄) ∼ Q(x)W (y |x)Q(x̄).

Fig. 1 compares the error exponents (28), (30) and (24) at
SNRs 5 dB and 10 dB. It suggests that Eswp,β

r (R) approaches
the constant-composition exponent.
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Fig. 2. Relative constant-composition exponent E
¯
cc
r for 16QAM.

For a more detailed comparison, we introduce error exponent
ratios with the iid exponent as the baseline. We call these
the relative constant-composition exponent and the relative
swapped scaling exponent, respectively given by

E
¯

cc
r (R) ,

Ecc
r (R)

Eiid
r (R)

and E
¯

swp,β
r (R) ,

Eswp,β
r (R)

Eiid
r (R)

. (32)

Our figures show the relative random-coding exponents as
a function of both SNR and the rate R in a single contour
plot for coded modulation with a 16QAM constellation and
a uniform distribution Q. The figures also depict the mutual
information (MI) as a solid line and the critical rate1 Riid

cr of the
iid exponent (resp. Rcc

cr of the constant-composition exponent)
as a dashed (resp. dotted) line.

1) Constant-composition exponent: The constant-
composition exponent’s gain with respect to the iid
exponent provides a benchmark to assess the performance
of the codeword rescaling. The relative exponent is shown
in Fig. 2. The figure reveals that the constant-composition
exponent exhibits the largest gains for low to moderate SNRs.
At high SNRs above 12 dB, it is roughly equal to the iid
exponent. A similar tendency is seen at very low SNRs. For
our comparison, the most relevant part of the contour plot is
located between the critical rates and the MI, since below
the critical rate expurgated versions of the exponents lead
to better bounds. The maximal gain with respect to the iid
exponent is roughly 13 % and occurs around SNR = 5.5 dB
and R =1.25 bits per channel use.

2) Swapped exponent with β = 1: We discuss first the
relative swapped exponent with β = 1, which corresponds to

1The critical rate is defined as the largest rate R at which the optimal ρ in
the exponent optimization is one.

International Zurich Seminar on Communications (IZS), March 2 – 4, 2016

173



−5 0 5 10 15 20
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.10

1.05

1.00

0.95

0.90

SNR (dB)

R
(b
it
s/

u
se

)

ICM

Rcc
cr

Riid
cr

0.60 0.70 0.80 0.90 1.00 1.10

Fig. 3. Relative swapped exponent E
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r with β = 1 for 16QAM.
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Fig. 4. Relative swapped exponent E
¯
swp,β
r for 16QAM.

the standard decoding rule of maximizing Wn. Fig. 3 shows
this relative exponent. We observe two regimes in the relevant
region between the critical rate and the capacity. Below about
7 dB, there is a gain with respect to the iid exponent, whereas
above 7 dB the swapped exponent is worse.

In the low-SNR region and close to the capacity, the swapped
exponent achieves similar gains as the constant-composition
exponent, namely, about 10 % gain at 3 dB and 1.5 bits per
channel use. However, it falls short as the rate approaches the
critical rate. For example, there is no gain at 5.5 dB and 1.25 bits
per channel use, the point where the constant-composition
exponent achieves the highest gain. At high SNRs, especially
around 14 dB, Fig. 3 unveils a large loss compared to the iid
exponent. In this region, we observe not even at capacity a
gain and the loss is up to 35 % close to the critical rate.

3) Swapped exponent with optimal β: Optimizing over β
to adapt the mismatched metric leads to respectable gains in
some regions of the SNR-rate plane, as we can see in Fig. 4. At
high SNRs, the swapped exponent with optimized β exhibits a
considerable improvement compared to the swapped exponent
with β = 1, even though it is still below the iid exponent.

Most notably, for low SNRs, the swapped exponent with
optimized β achieves more than 90 % of the gain that the
constant-composition exponent achieves with respect to the iid
exponent. Especially in regions farther away from capacity,
the fully optimized exponent shows a large improvement with
respect to the one with β = 1.
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