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Abstract—This paper studies the subexponential prefactor to
the random-coding bound for a given rate. Using a refinement
of Gallager’s bounding techniques, an alternative proof of a
recent result by Altuğ and Wagner is given, and the result is
extended to the setting of mismatched decoding.

I. INTRODUCTION

Error exponents are a widely-studied tool in information
theory for characterizing the performance of coded commu-
nication systems. Early works on error exponents for discrete
memoryless channels (DMCs) include those of Fano [1, Ch.
9], Gallager [2, Ch. 5] and Shannon et al. [3]. The achievable
exponent of [1], [2] was obtained using i.i.d. random coding,
and coincides with the sphere-packing exponent given in [3]
for rates above a threshold called the critical rate.

Denoting the exponent of [1], [2] by Er(R), we have the
following: For all (n,R), there exists a code of rate R and
block length n such that the error probability pe satisfies
pe ≤ α(n,R)e−nEr(R), where α(n,R) is a subexponential
prefactor. In both [1] and [2], the prefactor is O(1). In par-
ticular, Gallager showed that one can achieve α(n,R) = 1.

Early works on improving the O(1) prefactor for certain
channels and rates include those of Elias [4], Dobrushin [5]
and Gallager [6]. These results were recently generalized by
Altuğ and Wagner [7]–[9], who obtained prefactors to the
random-coding bound at all rates below capacity, as well as
converse results above the critical rate. The bounds in [7], [8]
were obtained using i.i.d. random coding, and the behavior of
the prefactor varies depending on whether the rate is above
or below the critical rate, and whether a regularity condition
is satisfied (see Section II).

In this paper, we give an alternative proof of the main
result of [7], [8], as well as a generalization to the setting of
mismatched decoding [10]–[14], where the decoding rule is
fixed and possibly suboptimal (e.g. due to channel uncertainty
or implementation constraints). The analysis of [7], [8] can
be considered a refinement of that of Fano [1, Ch. 9], whereas
the analysis in this paper can be considered a refinement of
that of Gallager [2, Ch. 5]. Our techniques can also be used
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to derive Gallager’s expurgated exponent [2, Ch. 5.7] with
an O

(
1√
n

)
prefactor under some technical conditions [15],

thus improving on Gallager’s O(1) prefactor.

A. Notation

Vectors are written using bold symbols (e.g. x), and the
corresponding i-th entry is written with a subscript (e.g. xi).
For two sequences fn and gn, we write fn = O(gn) if |fn| ≤
c|gn| for some c and sufficiently large n, and fn = o(gn) if
limn→∞

fn
gn

= 0. The indicator function is denoted by 11{·}.
The marginals of a joint distribution PXY (x, y) are de-

noted by PX(x) and PY (y). Expectation with respect to a
joint distribution PXY (x, y) is denoted by EP [·], or simply
E[·] when the probability distribution is understood from the
context. Given a distribution Q(x) and conditional distribu-
tion W (y|x), we write Q×W to denote the joint distribution
defined by Q(x)W (y|x). The set of all empirical distributions
on a vector in Xn (i.e. types [16, Sec. 2], [17]) is denoted
by Pn(X ). The type of a vector x is denoted by P̂x(·). For
a given Q ∈ Pn(X ), the type class Tn(Q) is defined to be
the set of sequences in Xn with type Q.

II. STATEMENT OF MAIN RESULT

Let X and Y denote the input and output alphabets respec-
tively. The probability of receiving a given output sequence
y given that x is transmitted is given by Wn(y|x) 4

=∏n
i=1W (yi|xi). A codebook C = {x(1), ...,x(M)} is known

at both the encoder and decoder. The encoder receives as in-
put a message m uniformly distributed on the set {1, ...,M},
and transmits the corresponding codeword x(m). Given y, the
decoder forms the estimate

m̂ = argmax
j∈{1,...,M}

qn(x(j),y), (1)

where n is the block length, and qn(x,y) ,
∏n
i=1 q(xi, yi).

The function q(x, y) is called the decoding metric, and is
assumed to be non-negative and such that

q(x, y) = 0 ⇐⇒ W (y|x) = 0. (2)

In the case of a tie, a random codeword achieving the max-
imum in (1) is selected. In the case that q(x, y) = W (y|x),
i.e. maximum-likelihood (ML) decoding, the decoding rule
in (1) is optimal. Otherwise, this setting is that of mismatched
decoding [10]–[14].



We study the random-coding error probability under i.i.d.
random coding, where the M = enR codewords are gener-
ated independently according to

PX(x) = Qn(x)
4
=

n∏
i=1

Q(xi), (3)

and where Q is an arbitrary input distribution. The random-
coding error probability is denoted by pe.

It was shown in [12] that pe ≤ e−nEr(Q,R), where

Er(Q,R)
4
= max
ρ∈[0,1]

E0(Q, ρ)− ρR (4)

E0(Q, ρ)
4
= sup

s≥0
− logE

[(
E
[
q(X,Y )s |Y

]
q(X,Y )s

)ρ]
(5)

with (X,Y,X) ∼ Q(x)W (y|x)Q(x). We showed in [18] that
this exponent is tight with respect to the ensemble average
for i.i.d. random coding, i.e. limn→∞− 1

n log pe = Er. The
corresponding achievable rate is given by

IGMI(Q)
4
= sup

s≥0
E
[
log

q(X,Y )s

E
[
q(X,Y )s |Y

]], (6)

which is commonly referred to as the generalized mutual
information (GMI) [12]. Under ML decoding, i.e. q(x, y) =
W (y|x), Er equals the exponent of Fano and Gallager
[1], [2], and IGMI(Q) equals the mutual information. The
corresponding optimal choices of s in (5)–(6) are respectively
given by s = 1

1+ρ and s = 1.
We define ρ̂(Q,R) to be the value of ρ achieving the

maximum in (4) at rate R. From the analysis of Gallager [2,
Sec. 5.6], we know that ρ̂ equals one for all rates between 0
and some critical rate,

Rcr(Q)
4
= max

{
R : ρ̂(Q,R) = 1

}
, (7)

and is strictly decreasing for all rates between Rcr(Q) and
IGMI(Q).

Similarly to [7], we define the following notion of regu-
larity. We introduce the set

Y1
4
=
{
y : q(x, y) 6= q(x, y) for some

x, x such that Q(x)Q(x)W (y|x)W (y|x) > 0
}

(8)

and define (W, q,Q) to be regular if

Y1 6= ∅. (9)

When q(x, y) = W (y|x), this is the feasibility decoding is
suboptimal (FDIS) condition of [7]. We say that (W, q,Q)
is irregular if it is not regular. A notable example of the
irregular case is the binary erasure channel (BEC) under ML
decoding.

Theorem 1. Fix any (W, q) satisfying (2), input distribution
Q and rate R < IGMI(Q). The random-coding error proba-
bility for the i.i.d. ensemble in (3) satisfies

pe ≤ α(n,R)e−nEr(Q,R) (10)

for sufficiently large n, where α(n,R) is defined as follows.
If (W, q,Q) is regular, then

α(n,R)
4
=

{
K

n
1
2
(1+ρ̂(Q,R))

R ∈
(
Rcr(Q), IGMI(Q)

)
K√
n

R ∈
[
0, Rcr(Q)

]
,

(11)

and if (W, q,Q) is irregular, then

α(n,R)
4
=

{
K√
n

R ∈
(
Rcr(Q), IGMI(Q)

)
1 R ∈

[
0, Rcr(Q)

]
,

(12)

where K is a constant depending only on W , q, Q and R.

Proof: See Section III.
In the case of ML decoding, Theorem 1 coincides with

the main results of Altuğ and Wagner [7], [8] in both the
regular and irregular case. Neither [7], [8] nor the present
paper attempt to explicitly characterize or bound the constant
K in (11)–(12). Asymptotic bounds with the constant factor
specified are derived in [14] using saddlepoint approxima-
tions; see also [6] for rates below the critical rate, and [5]
for strongly symmetric channels.1

III. PROOF OF THEOREM 1

For a fixed value of s ≥ 0, we define the generalized
information density [18], [19]

is(x, y)
4
= log

q(x, y)s∑
xQ(x)q(x, y)s

(13)

and its multi-letter extension

ins (x,y)
4
=

n∑
i=1

is(xi, yi). (14)

Our analysis is based on the random-coding union (RCU)
bound for mismatched decoding, given by [18], [19]

pe ≤ E
[
min

{
1, (M − 1)

× P
[
ins (X,Y ) ≥ ins (X,Y ) |X,Y

]}]
, (15)

where (X,Y ,X) ∼ PX(x)Wn(y|x)PX(x). Furthermore,
we will make use of the identity

E0(Q, ρ) = sup
s≥0
− logE

[
e−ρis(X,Y )

]
(16)

with (X,Y ) ∼ Q×W , which follows from (5) and (13).
We provide a number of preliminary results in Section

III-A. The proof of Theorem 1 for the regular case is given in
Section III-B, and the changes required to handle the irregular
case are given in Section III-C.

1The English translation of [5] incorrectly states that the prefactor is

O
(
n
− 1

2(1+ρ̂(R))
)

for the regular case with R > Rcr (see (1.28)–(1.32)
therein), but this error is not present in the original Russian version.



A. Preliminary Results
The main tool used in the proof of Theorem 1 is the

following lemma by Polyanskiy et al. [19], which can be
proved using the Berry-Esseen theorem.

Lemma 1. [19, Lemma 47] Let Z1, ..., Zn be independent
random variables with σ2 =

∑n
i=1 Var[Zi] > 0 and T =∑n

i=1 E[|Zi − E[Zi]|3] <∞. Then for any t,

E
[
exp

(
−
∑
i

Zi

)
11
{∑

i

Zi > t
}]

≤ 2
( log 2√

2π
+

12T

σ2

) 1
σ
exp

(
− t
)
. (17)

The following lemma shows that under the assumption (2),
we do not need to consider s growing unbounded in (5).

Lemma 2. For any (W, q) satisfying (2), and any ρ ∈ [0, 1],
the supremum in (5) is achieved (possibly non-uniquely) by
some finite s ≥ 0.

Proof: We treat the regular and irregular cases sepa-
rately. In the regular case, let (x, x, y) satisfy the condition
in the definition of Y1 in (8), and assume without loss of
generality that q(x, y) > q(x, y). We can upper bound the
objective in (5) by

− logQ(x)W (y|x)
(
Q(x)

(
q(x, y)

q(x, y)

)s)ρ
, (18)

which tends to −∞ as s→∞. It follows that the supremum
is achieved by a finite value of s.

In the irregular case, we have q(x, y) = q(x, y) wherever
Q(x)Q(x)W (y|x)q(x, y) > 0, where the replacement of
W (y|x) by q(x, y) in the latter condition follows from (2).
In this case, writing the objective in (5) as

− log
∑
x,y

Q(x)W (y|x)
(∑

x

Q(x)

(
q(x, y)

q(x, y)

)s)ρ
, (19)

we see that all choices of s > 0 are equivalent, since the
argument to (·)s equals one for all (x, x, y) yielding non-
zero terms in the summations.

The following lemma is somewhat more technical, and
ensures the existence of a sufficiently high probability set in
which Lemma 1 can be applied to the inner probability in
(29) with a value of σ having

√
n growth. We make use of

the conditional distributions

Vs(x|y)
4
=

Q(x)q(x, y)s∑
xQ(x)q(x, y)s

(20)

V ns (x|y) 4=
n∏
i=1

Vs(xi|yi), (21)

which yield is(x, y) = log Vs(x|y)
Q(x) and ins (x,y) =

log
V ns (x|y)
Qn(x) (see (13)–(14)). Furthermore, we define the ran-

dom variables

(X,Y,X,Xs) ∼ Q(x)W (y|x)Q(x)Vs(xs|y)
(X,Y ,X,Xs) ∼ Qn(x)Wn(y|x)Qn(x)V ns (xs|y), (22)

and we write the empirical distribution of y as P̂y(·).

Lemma 3. If (W, q,Q) is regular and (2) holds, then the set

Fn,δ
4
=
{
y :

∑
y∈Y1

P̂y(y) > δ
}

(23)

satisfies the following properties:

1) For any y ∈ Fn,δ , we have

Var
[
ins (Xs,Y ) |Y = y

]
≥ nδvs, (24)

where

vs
4
= min
y∈Y1

Var
[
is(Xs, Y ) |Y = y

]
. (25)

Furthermore, vs > 0 for all s > 0.
2) For all R < IGMI(Q), there exists a choice of δ > 0

such that under i.i.d. random coding,

P
[
error ∩ Y /∈ Fn,δ

]
≤ e−n(E

′
r(Q,R)+o(1)) (26)

for some E′r(Q,R) > Er(Q,R).
Proof: See the Appendix.

B. Proof for the Regular Case

Using the second part of Lemma 3 with the suitably chosen
value of δ, and using the fact that limn→∞− 1

n log pe = Er
[18], we can write the random-coding error probability as

pe = P
[
error ∩ Y ∈ Fn,δ

]
+ P

[
error ∩ Y /∈ Fn,δ

]
(27)

=
(
1 + o(1)

)
P
[
error ∩ Y ∈ Fn,δ

]
. (28)

Writing K1 in place of 1 + o(1) and modifying the RCU
bound in (15) to include the condition Y ∈ Fn,δ in (28), we
obtain

pe ≤ K1

∑
x,y∈Fn,δ

PX(x)Wn(y|x)

×min
{
1,MP

[
ins (X,y) ≥ ins (x,y)

]}
. (29)

The value of s ≥ 0 in (29) is arbitrary, and we choose it to
achieve the supremum in (5) at ρ = ρ̂(Q,R), in accordance
with Lemma 2. We can assume that s > 0, since s = 0 yields
an objective of zero in (5), contradicting the assumption that
R < IGMI.

In order to make the inner probability in (29) more
amenable to an application of Lemma 1, we follow [20, Sec.
3.4.5] and write

Qn(x) = Qn(x)
V ns (x|y)
V ns (x|y)

(30)

= V ns (x|y) exp
(
− ins (x,y)

)
. (31)

For a fixed sequence y and a constant t, summing both sides
of (31) over all x such that ins (x,y) ≥ t yields

P
[
ins (X,y) ≥ t

]
= E

[
exp

(
− ins (Xs,Y )

)
11
{
ins (Xs,Y ) ≥ t

} ∣∣∣Y = y
]
(32)



under the joint distribution in (22). Applying Lemma 1 to
(32) and using the first part of Lemma 3, we obtain for all
y ∈ Fn,δ that

E
[
exp

(
− ins (Xs,Y )

)
11
{
ins (Xs,Y ) ≥ t

} ∣∣∣Y = y
]

≤ K2√
n
e−t (33)

for some constant K2. Here we have used the fact that T in
(17) grows linearly in n, which follows from the fact that we
are considering finite alphabets [19, Lemma 46]. Substituting
(33) into (29), we obtain

pe ≤ K1

∑
x,y∈Fn,δ

PX(x)Wn(y|x) (34)

×min

{
1,
MK2√

n
e−i

n
s (x,y)

}
(35)

≤ K1E
[
min

{
1,
MK2√

n
e−i

n
s (X,Y )

}]
(36)

≤ K3E
[
min

{
1,
M√
n
e−i

n
s (X,Y )

}]
(37)

where (36) follows by upper bounding the summation over
y ∈ Fn,δ by a summation over all y, and (37) follows by
defining K3

4
= K1 max{1,K2}.

We immediately obtain the desired result for rates below
the critical rate by upper bounding the min{1, ·} term in (37)
by one and using (16) (with ρ = 1) and the definition of ins .
In the remainder of the subsection, we focus on rates above
the critical rate.

For any non-negative random variable A, we have
E[min{1, A}] = P[A ≥ U ], where U is uniform on (0, 1)
and independent of A. We can thus write (37) as

pe ≤ K3P
[
M√
n
e−i

n
s (X,Y ) ≥ U

]
(38)

= K3P
[ n∑
i=1

(
R− is(Xi, Yi)

)
≥ log

(
U
√
n
)]
. (39)

Let F (t) denote the cumulative distribution function (CDF)
of R− is(X,Y ) with (X,Y ) ∼ Q×W , and let Z1, · · · , Zn
be i.i.d. according to the tilted CDF

FZ(z) = eEr(Q,R)

ˆ z

−∞
eρ̂tdF (t), (40)

where ρ̂ = ρ̂(Q,R). It is easily seen that this is indeed a
CDF by writing
ˆ ∞
−∞

eρ̂tdF (t) = E
[
eρ̂(R−is(X,Y ))

]
= e−Er(Q,R), (41)

where the last equality follows from (16) and since we have
assumed that s is chosen optimally.

Similarly to [21, Lemma 2], we can use (40) to write the
probability in (39) as follows:

P
[ n∑
i=1

(
R− is(Xi, Yi)

)
≥ log

(
U
√
n
)]

=

˙
∑
i ti≥log(u

√
n)

dF (t1) · · · dF (tn)dFU (u) (42)

= e−nEr(Q,R)

˙
∑
i zi≥log(u

√
n)

e−ρ̂
∑
i zi

× dFZ(z1) · · · dFZ(zn)dFU (u), (43)

where FU (u) denotes the CDF of U . Substituting (43) into
(39), we obtain

pe ≤ K3e
−nEr(Q,R)

× E
[
e−ρ̂

∑
i Zi11

{
ρ̂
∑
i

Zi ≥ ρ̂ log
(
U
√
n
)}]

. (44)

Let E0(Q, ρ, s) be defined as in (5) with a fixed value of s
in place of the supremum. The moment generating function
(MGF) of Z is given by

MZ(τ) = E[eτZ ] (45)

= eEr(Q,R)E[e(ρ̂+τ)(R−is(X,Y ))] (46)

= eE0(Q,ρ̂,s)e−(E0(Q,ρ̂+τ,s)−τR), (47)

where (46) follows from (40), and (47) follows from (4) and
(16). Using the identities E[Z] = dMZ

dτ

∣∣∣
τ=0

and Var[Z] =

d2MZ

dτ2

∣∣∣
τ=0

, we obtain

E[Z] = R− ∂E0(Q, ρ, s)

∂ρ

∣∣∣
ρ=ρ̂

= 0 (48)

Var[Z] = −∂
2E0(Q, ρ, s)

∂ρ2

∣∣∣
ρ=ρ̂

> 0, (49)

where the second equality in (48) and the inequality in (49)
hold since R ∈

(
Rcr(Q), IGMI(Q)

)
and hence ρ̂ ∈ (0, 1)

(e.g. see [2, pp. 142-143]). Writing the expectation in (44)
as a nested expectation given U and applying Lemma 1, it
follows that

pe ≤ K4e
−nEr(Q,R)E

[
1√
n
e−ρ̂ log(U

√
n)

]
(50)

= K4e
−nEr(Q,R)E

[
1√
n

(
1

U
√
n

)ρ̂]
(51)

=
K4

n
1
2 (1+ρ̂)

e−nEr(Q,R)E
[
U−ρ̂

]
(52)

=
K5

n
1
2 (1+ρ̂)

e−nEr(Q,R), (53)

where K4 and K5 = K4E
[
U−ρ̂

]
are constants. This con-

cludes the proof.



C. Proof for the Irregular Case

The upper bound of one at rates below the critical rate
in (12) was given by Kaplan and Shamai [12], so we focus
on rates above the critical rate. The proof for the regular
case used two applications of Lemma 1; see (33) and (50).
The former leads to a multiplicative n−

ρ̂(R)
2 term in the

final expression, and the second leads to a multiplicative
n−

1
2 term. In the irregular case, we only perform the latter

application of Lemma 1. The proof is otherwise essentially
identical. Applying Markov’s inequality to the RCU bound
in (15), we obtain

pe ≤ E
[
min

{
1,Me−i

n
s (X,Y )

}]
. (54)

Repeating the analysis of the regular case starting from (37),
we obtain the desired result.

APPENDIX

Here we provide the proof of Lemma 3. The first property
is easily proved by writing

Var[ins (Xs,Y ) |Y = y] (55)

=

n∑
i=1

Var[is(Xs,i, Yi) |Yi = yi] (56)

≥
∑
y∈Y1

nP̂y(y)Var[is(Xs, Y ) |Y = y]. (57)

Substituting the bound on P̂y(y) in (23) and the definition
of vs in (25), we obtain (24). To prove that vs > 0, we note
that the variance of a random variable is zero if and only if
the variable is deterministic, and hence

Var[is(Xs, Y ) |Y = y] = 0

⇐⇒ log
Vs(x|y)
Q(x)

is independent of

x wherever Vs(x|y) > 0 (58)

⇐⇒ q(x, y)s∑
xQ(x)q(x, y)s

is independent of

x wherever Q(x)q(x, y)s > 0 (59)
⇐⇒ q(x, y) is independent of

x wherever Q(x)q(x, y) > 0 (60)
⇐⇒ y /∈ Y1, (61)

where (59) follows from the definition of Vs in (20), (60)
follows from the assumption s > 0, and (61) follows from
(2) and the definition of Y1 in (8).

We now turn to the proof of the second property. Modify-
ing the RCU bound in (15) to include the condition Y /∈ Fn,δ

in (26), we have for any s ≥ 0 that

P
[
error ∩ Y /∈ Fn,δ

]
(62)

≤
∑

x,y/∈Fn,δ

Qn(x)Wn(y|x)

×min
{
1,MP

[
ins (X,y) ≥ ins (x,y)

]}
(63)

≤
∑

x,y/∈Fn,δ

Qn(x)Wn(y|x)
(
Me−i

n
s (x,y)

)ρ
(64)

where (64) follows from Markov’s inequality and since
min{1, α} ≤ αρ (0 ≤ ρ ≤ 1). We henceforth choose ρ
and s to achieve the maximum and supremum in (4) and
(5) respectively, in accordance with Lemma 2. With these
choices, we have similarly to (16) that

e−nEr(Q,R) =
∑
x,y

Qn(x)Wn(y|x)
(
Me−i

n
s (x,y)

)ρ
. (65)

Hence, we will complete the proof by showing that∑
x,y/∈Fn,δ

Qn(x)Wn(y|x)e−ρi
n
s (x,y) (66)

has a strictly larger exponential rate of decay than∑
x,y

Qn(x)Wn(y|x)e−ρi
n
s (x,y) (67)

for some δ > 0. By performing an expansion in terms of
types, (67) is equal to∑

PXY ∈Pn(X×Y)

P
[
(X,Y ) ∈ Tn(PXY )

]
e−nρEP [is(X,Y )]

(68)

= max
PXY

exp
(
− n

(
D(PXY ‖Q×W )

+ ρEP [is(X,Y )] + o(1)
))
, (69)

where (69) follows from the property of types in [17, Eq.
(12)] and the fact that the number of joint types is polynomial
in n. Substituting the definitions of divergence and is (see
(13)) into (69), we see that the exponent of (67) equals

min
PXY

∑
x,y

PXY (x, y)

× log

(
PXY (x, y)

Q(x)W (y|x)

(
q(x, y)s∑

xQ(x)q(x, y)s

)ρ)
. (70)

Similarly, and from the definition of Fn,δ in (23), (66) has
an exponent equal to

min
PXY :

∑
y∈Y1

PY (y)≤δ

∑
x,y

PXY (x, y)

× log

(
PXY (x, y)

Q(x)W (y|x)

(
q(x, y)s∑

xQ(x)q(x, y)s

)ρ)
. (71)



A straightforward evaluation of the Karush-Kuhn-Tucker
(KKT) conditions [22, Sec. 5.5.3] yields that (70) is uniquely
minimized by

P ∗XY (x, y)

=

Q(x)W (y|x)
(∑

xQ(x)q(x,y)s

q(x,y)s

)ρ
∑
x′,y′ Q(x′)W (y′|x′)

(∑
x′ Q(x′)q(x′,y′)s

q(x′,y′)s

)ρ . (72)

From the assumptions in (2) and (9), we can find a symbol
y∗ ∈ Y1 such that P ∗Y (y

∗) > 0. Choosing δ < P ∗Y (y
∗), it

follows that P ∗XY fails to satisfy the constraint in (71), and
thus (71) is strictly greater than (70).
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