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Abstract—This paper studies channel coding for discrete

memoryless channels with a given (possibly suboptimal) decod-

ing rule. Using upper and lower bounds on the random-coding

error probability, the exponential behavior of three random-

coding ensembles is characterized. The ensemble tightness of

existing achievable error exponents is proven for the i.i.d.

and constant-composition ensembles, and a new ensemble-tight

error exponent is given for the cost-constrained i.i.d. ensemble.

Connections are drawn between the ensembles under both

mismatched decoding and maximum-likelihood decoding.

I. INTRODUCTION

It is well known that random coding techniques can be
used to prove the achievability part of Shannon’s channel
coding theorem, as well as characterizing the exponential be-
haviour of the best code for a range of rates under maximum-
likelihood (ML) decoding [1]. In practice, however, ML
decoding is often ruled out due to channel uncertainty
and implementation constraints. In this paper, we consider
the problem of mismatched decoding [2]–[8], in which the
decoding rule is fixed and not necessarily optimal. In this
setting, the following random-coding ensembles have been
considered (see Section III for details):

1) the i.i.d. ensemble, in which each symbol of each
codeword is generated independently;

2) the constant-composition ensemble, in which each code-
word has the same empirical distribution;

3) the cost-constrained i.i.d. ensemble, in which each code-
word satisfies a given cost constraint.

The i.i.d. ensemble can be used to prove the achievability of
Generalized Mutual Information (GMI) [2], while the latter
two ensembles can be used to prove the achievability of the
higher LM rate [3], [4]. It is known that the LM rate is equal
to the mismatched capacity in the case that the input alphabet
is binary [5], but this is not true in general when the input
is non-binary. It is therefore of interest to determine whether
the weakness is due to the random-coding ensemble itself,
or the bounding techniques used in the analysis.

This question was addressed in [6]–[8], where it was
shown that the GMI and LM rate are tight with respect to
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the ensemble average for the i.i.d. and constant-composition
ensembles respectively; see Section I-B for details. In this
paper, we strengthen these results by obtaining ensemble-
tight error exponents for each of the above ensembles. The
analysis is performed in a unified fashion, and connections
are drawn between the three ensembles.

A. System Setup

The input and output alphabets are denoted by X and
Y respectively, and the channel W (y|x) is assumed to be
a discrete memoryless channel (DMC). We consider block
coding, in which the codebook C = {x(1)

, ...,x

(M)} is
known at both the encoder and decoder. The encoder chooses
a message m equiprobably from the set {1, ...,M} and
transmits the corresponding codeword x

(m). The decoder
receives the vector y at the output of the channel, and forms
the estimate

m̂ = argmax

j2{1,...,M}

n

Y

i=1

q(x

(j)

i

, y

i

) (1)

where n is the length of each codeword and x

(j)

i

is the i-th
entry of x(j) (similarly for y

i

). The function q(x, y) is called
the decoding metric, and is assumed to be non-negative. In
the case of a tie, a random codeword achieving the maximum
in (1) is selected. Throughout the paper, we write q(x,y) as
a shorthand for

Q

n

i=1

q(x

i

, y

i

), and similarly for W (y|x).
The mismatched capacity is defined to be the supremum of
all rates R =

1

n

logM such that the error probability p

e

(C)
can be made arbitrarily small for sufficiently large n.

An error exponent E(R) is said to be achievable if there
exists a sequence of codebooks of length n and rate R such
that

lim

n!1
� 1

n

log p

e

(C) � E(R). (2)

We let p
e

denote the average error probability with respect to
a given random-coding ensemble. The random-coding error
exponent E

r

(R) is said to exhibit ensemble tightness if

lim

n!1
� 1

n

log p

e

= E

r

(R). (3)

B. Contributions and Previous Work

The GMI and LM rate are respectively defined as

I
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where (X,Y,X) ⇠ Q(x)W (y|x)Q(x), and Q(x) is an
arbitrary input distribution. For the i.i.d. ensemble with input
distribution Q, it is known that p

e

! 0 as n ! 1
when R < I

GMI

(Q), whereas p

e

! 1 as n ! 1
when R > I

GMI

(Q) [2], [7]. Similarly, for the constant-
composition ensemble with input distribution Q, it has been
shown that p

e

! 0 as n ! 1 when R < I

LM

(Q), whereas
p

e

! 1 as n ! 1 when R > I

LM

(Q) [6], [8].
While achievable error exponents exist in the literature for

each of the aforementioned ensembles [2], [9], [10], we are
not aware of any complete results on ensemble tightness. The
ensemble tightness of error exponents in the matched regime
was addressed in [11], but an extension of these techniques
to the mismatched setting only proves ensemble tightness at
low rates.

In this paper, we give upper and lower bounds to the
random-coding error probability, and derive ensemble-tight
error exponents for each ensemble. For the i.i.d. ensemble
and constant-composition ensemble, our results prove the
ensemble tightness of the achievable exponents presented
in [2] and [9] respectively. The exponent for the cost-
constrained i.i.d. ensemble appears to be new, and can be
weakened to that of [10]. We draw connections between the
three ensembles under both mismatched decoding and ML
decoding.

C. Notation

The set of all probability distributions on an alphabet A is
denoted by P(A), and the set of all empirical distributions
on a vector in An (i.e. types) is denoted by P

n

(A). The type
of a vector x is denoted by p

x

(·). For a given Q 2 P
n

(A),
the type class T (Q) is defined to be the set of all sequences
in An with type Q. We refer the reader to [12], [13] for an
introduction to the method of types.

The probability of an event is denoted by P[·], and the
symbol ⇠ means “distributed as”. The marginals of a joint
distribution P

XY

(x, y) are denoted by P

X

(x) and P

Y

(y). We
write P

X

=

e

P

X

to denote element-wise equality between two
probability distributions on the same alphabet. Expectation
with respect to a joint distribution P

XY

(x, y) is denoted by
E
P

[·]. When the associated probability distribution is under-
stood from the context, the expectation is written as E[·].
Similarly, mutual information with respect to P

XY

is written
as I

P

(X;Y ), or simply I(X;Y ) when the distribution is
understood from the context. Given a distribution Q(x) and
a conditional distribution W (y|x), we write Q⇥W to denote
the joint distribution defined by Q(x)W (y|x).

For two sequences f(n) and g(n), we write f(n)

.

= g(n)

if lim

n!1
1

n

log

f(n)

g(n)

= 0, and similarly for ˙ and ˙�. All
logarithms have base e, and all rates are in units of nats
except in the examples, where bits are used. We define [c]

+

=

max{0, c}, and denote the indicator function by 1{·}.

II. RANDOM-CODING ERROR PROBABILITY

In this section, we present a non-asymptotic analysis of the
random-coding error probability p

e

for an arbitrary codeword
distribution Q

X

(x). While it is possible to write an exact
expression for p

e

[14], its computation is usually infeasible
even for moderate values of n. Similarly to [14], we can
upper bound the error probability by assuming that ties are
broken at random, and apply the union bound to obtain [15]

p

e

 RCU(n,M)

�

= E
⇥

min

�

1, (M � 1)P[q(X,Y ) � q(X,Y ) |X,Y ]

 ⇤

(6)

where (X,Y ,X) ⇠ Q

X

(x)W (y|x)Q
X

(x). This is the
random-coding union (RCU) bound for mismatched de-
coders.

In order to lower bound the ensemble average error prob-
ability, we make use of a lower bound on the probability of
a union of events due to de Caen, which states that [16]

P
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i

#
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]

2

P

k

j=1

P[A
i

\A

j

]

(7)

for an arbitrary sequence of probabilistic events A

1

, ..., A

k

.
In the case that the events are pairwise independent and
identically distributed, we therefore obtain

P
"

k

[

i=1

A

i

#

� kP[A
1

]

1 + (k � 1)P[A
1

]

. (8)

Theorem 1. The random-coding error probability for the
mismatched decoder which resolves ties randomly satisfies

p

e

� RCU

L

(n,M) � 1

4

RCU(n,M) (9)

where

RCU

L

(n,M)

4
=

1

2

E


(M � 1)P[q(X,Y ) � q(X,Y ) |X,Y ]

1 + (M � 2)P[q(X,Y ) � q(X,Y ) |X,Y ]

�

+

1

2

E


(M � 1)P[q(X,Y ) > q(X,Y ) |X,Y ]

1 + (M � 2)P[q(X,Y ) > q(X,Y ) |X,Y ]

�

(10)

and (X,Y ,X) ⇠ Q

X

(x)W (y|x)Q
X

(x).

Proof: Consider a fixed codebook C with error probabil-
ity p

e

(C). Let B
0

be the event that one or more codewords
yield a strictly higher metric than the transmitted one, and let
B

`

(` � 1) be the event that the transmitted codeword yields
a metric which is equal highest with ` other codewords. We



have

p

e

(C) = P[B
0
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(11)
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where p

0
e

(C) 4
= P[B

0

]+

P

M�1

`=1

P[B
`

] is the error probability
of a decoder which decodes ties as errors. Averaging (13)
over the random-coding distribution, we obtain

p

e
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P
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(14)

where (X

(1)

,Y ) ⇠ Q

X

(x)W (y|x) and the X

(i) (i � 2)
are generated according to Q

X

(x), independently of X

(1)

and Y . The first inequality in (9) follows by writing each
probability in (14) as an expectation given X

(1) and Y , and
applying the lower bound in (8). The second inequality in
(9) follows by lower bounding (10) by the first of the two
terms, replacing M � 2 in the denominator with M � 1, and
applying the inequality ↵

1+↵

� 1

2

min{1,↵}.
The complexity of the computation of RCU

L

(n,M) is
essentially identical to that of RCU(n,M). The second
inequality in (9) shows that RCU(n,M) is ensemble-tight
to within a factor of four, which will be useful for obtaining
ensemble-tight error exponents in Section III.

We compare the upper and lower bounds numerically by
considering the channel defined by the entries of the matrix

2
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1� 2�
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5 (15)

with X = Y = {0, 1, 2}. The mismatched decoder chooses
the codeword which is closest to y in terms of Hamming
distance. For example, the decoding metric can be taken to
be the entries of the matrix

2

4

1� 2� � �

� 1� 2� �

� � 1� 2�

3

5 (16)

for any � 2 (0,

1

3

). That is, the decoder uses a metric which
is matched to a symmetric channel, but the true channel is
asymmetric.

We set �
0

= 0.01, �
1

= 0.05 and �
2

= 0.25 and consider
the ensemble in which each symbol of each codeword
is generated independently according to Q = (

1

3

,

1

3

,

1

3

).
Under these parameters, we have that I

GMI

(Q) = 0.643,
I

LM

(Q) = 0.728 and I(X;Y ) = 0.763 bits/use. Figure
1 plots RCU(n,M) and RCU

L

(n,M) for n = 50, under
both mismatched decoding and ML decoding. We observe
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Figure 1. Random coding upper and lower bounds for the channel defined in
(15) with n = 50, �0 = 0.01, �1 = 0.05, �2 = 0.25 and Q = ( 13 ,

1
3 ,

1
3 ).

The mismatched decoder uses the minimum Hamming distance metric given
in (16).

a very close match between the upper and lower bounds
across all rates, particularly in the case of ML decoding.
The slightly larger gap in the mismatched case is due to an
increased probability of decoding ties, arising from the fact
that a simpler decoding metric is being used.

III. RANDOM-CODING ERROR EXPONENTS

In this section, we consider three families of the random-
coding distribution Q

X

(x), each of which depends on an
input distribution Q(x).

1) The i.i.d. ensemble is given by

Q

X

(x) =

n

Y

i=1

Q(x

i

). (17)

In words, each symbol of each codeword is generated
independently according to Q.

2) The constant-composition ensemble is given by

Q

X

(x) =

1

|T (Q
n

)|1
�

x 2 T (Q

n

)

 

(18)

where Q

n

is the most probable type under Q. That is,
each codeword is generated uniformly over the type
class T (Q

n

), and hence each codeword has the same
composition.

3) The cost-constrained i.i.d. ensemble is given by

Q

X

(x) =

1

µ

n

n

Y
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Q(x

i

)1

(

�

�

�

�

�

1

n

n

X

i=1

a(x
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 �
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)

(19)
where a(x) is a cost function, �

a

4
= E

Q

[a(X)], � is
a positive constant which does not vary with n, and
µ

n

is a normalizing constant. Roughly speaking, each
codeword is generated according to an i.i.d. distribution



conditioned on the empirical mean of a(x) being very
close to the true mean. The cost function a should not
be viewed as being chosen to meet a system constraint
(e.g. power limitations). Rather, it is introduced in
order to improve the performance of the random-coding
ensemble; see [7], [10] for details.

We can rewrite each of the random-coding distributions in
(17)–(19) as an i.i.d. distribution conditioned on the empirical
distribution of x being in a particular set of types. To this
end, we introduce the general ensemble defined by

Q

X

(x) =

1

µ

0
n

n

Y

i=1

Q(x

i

)1{p
x

2 G
n

} (20)

where G
n

2 P
n

(X ) is the set of possible codeword types
and µ

0
n

is a normalizing constant. The i.i.d. ensemble is
recovered by setting G

n

= P
n

(X ), the constant-composition
ensemble is recovered by setting G

n

= {Q
n

}, and the cost-
constrained i.i.d. ensemble is recovered by setting G

n

=

{P
X

: |E
P

[a(X)]� �

a

|  �

n

}.
We determine the exponential behaviour of the general

ensemble in (20) using known properties of types, analogous
to the analysis of the ML decoder given in [13]. We define
the sets
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Roughly speaking, S
n

is the set of possible types of
(X

(m)

,Y ), and T
n

is the set of types of (X(m

0
)

,Y ) which
lead to errors given that (X(m)

,Y ) 2 T (P

XY

), where m is
the transmitted message and m

0 is a different message.

Theorem 2. Suppose G
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is such that P[X 0 2 G
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). Then the random-coding error
probability for the random-coding ensemble in (20) satisfies
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Proof: From (6) and (9), we have

p

e

.

= RCU(n,M) = E [ (X,Y )] (25)

where

 (x,y)
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= min
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1, (M � 1)P
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q(X,y) � q(x,y)
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Let P
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From (20), the distribution of X is the same as that of X 0 ⇠
Q

n

i=1

Q(x

i

) conditioned on the event that X 0 2 G
n

. Hence,
using the assumption that P[X 0 2 G
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]

.

= 1, we obtain
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where (29) follows from the property of types in [13,
Eq. (18)], and the fact that the number of joint types is
polynomial in n.

Expanding the expectation in (25), we obtain

p
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2S
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and a nearly identical argument to (27)–(29) yields
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The proof is concluded by substituting (29) into (31).
Using Theorem 2, we obtain ensemble-tight error expo-

nents for the ensembles defined in (17)–(19). Specifically,
defining the sets
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we obtain the following corollary.



Corollary 3. The random-coding error exponents for the
ensembles defined in (17)–(19) are respectively given by
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Proof: The assumption P[X 0 2 G
n

]

.

= 1 in Theorem
2 holds trivially for the i.i.d. ensemble, and was shown to
hold in [12, Eq. (2.6)] and [10, Eq. (88)] for the constant-
composition ensemble and cost-constrained i.i.d. ensemble
respectively. Since any probability distribution can be ap-
proximated arbitrarily well by a type for sufficiently large
n, the minimizations over types in (24) can be replaced by
minimizations over all probability distributions [12]. Simi-
larly, the constraint P

X

= Q

n

for the constant-composition
ensemble can be replaced by P

X

= Q, and the constraint
|E

P

[a(X)]��
a
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n

for the cost-constrained i.i.d. ensemble
can be replaced by E

P

[a(X)] = �

a

, regardless of the value of
�. Similar arguments apply to the constraints on eP

X

for the
constant-composition and cost-constrained i.i.d. ensembles.

The optimization problems in (38)–(40) are all convex for
a fixed input distribution and cost function. Using the method
of Lagrange duality [17], each exponent can be written in an
alternative form.

Theorem 4. The error exponents in (38)–(40) can be ex-
pressed as
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E
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E
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(Q, ⇢, a)� ⇢R (43)

where
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(46)

and (X,Y,X) ⇠ Q(x)W (y|x)Q(x).

Proof: The proofs are similar for each of the three
ensembles, so we provide a sketch only for E

cc

r

. Applying
[a]

+

= max

⇢2[0,1]

⇢a to (39) and using Fan’s minimax
theorem [18], we obtain

E

cc

r

(Q,R) = max

⇢2[0,1]

ˆ

E

cc

0

(Q, ⇢)� ⇢R (47)

where

ˆ

E
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4
= min
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(Q)
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e
P

XY

2T cc
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)
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kQ⇥W ) + ⇢I e
P
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It remains to show via Lagrange duality that ˆ

E

cc

0

(Q, ⇢) =

E

cc

0

(Q, ⇢). We first fix P

XY

and consider the problem

min

e
P

XY

2T cc

(P

XY

)

I e
P

(X;Y ) (49)

the Lagrange dual of which is given by [6]

sup

s�0,a

X

x,y

P
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(x, y) log

q(x, y)

s

e

a(x)

P

x

P

X

(x)q(x, y)

s

e

a(x)

(50)

where s and a(x) are Lagrange multipliers. Substituting (50)
into (48) yields a min-sup problem, where the minimization
is over P

XY

2 S(P ) and the supremum is over s � 0

and a. Using Fan’s minimax theorem [18], the order of
these optimizations can be swapped. The proof is concluded
by forming the Lagrange dual problem of the resulting
optimization over P

XY

.
The expressions in (39) and (41) appear in [9] and [2]

respectively, though both derivations are different to ours. To
our knowledge, the alternative expressions in (38) and (42)
have not appeared previously, and the exponent Ecost

r

is new.
We note that the function a(x) represents different quantities
for the constant-composition ensemble and cost-constrained
i.i.d. ensemble. In the former case, a arises as a mathematical
optimization parameter, whereas in the latter case, a is a
design parameter for the random-coding ensemble.

The exponents in (41)–(43) can be derived directly, rather
than via Lagrange duality. The derivation of (41) is presented
in [2], and the expression in (42) follows by combining the
achievable error exponent of [19] with the fact that under
constant-composition codes, the metric q(x, y) is equivalent
to the metric q(x, y)

s

e

a(x) for any s � 0 and a [3].
The direct derivation of (43) is similar to that of [10],

where it was shown that an achievable error exponent for the
cost-constrained i.i.d. ensemble is given by
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4
= max

⇢2[0,1]

E

cost

0

0

(Q, ⇢, a)� ⇢R (51)
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(52)
Roughly speaking, the additional factor of e

a(x)

e

a(x)

in (52)
compared to the i.i.d. ensemble in (44) arises from the fact
that e

P
i

a(x

i

) is close to e

P
i

a(x

i

) for any codewords x

and x. For the function E

cost

0

in (46), the additional factor
e

r(a(x)��

a

) arises from the fact that e
P

i

a(x

i

) is close to e

n�

a ,
and similarly for the factor er(a(x)��

a

). We will see that the
refined exponent Ecost

r

improves on E

cost

0

r

in general.
While none of the above direct derivations prove ensemble

tightness, they each have the advantage of extending immedi-
ately to continuous alphabets after replacing the appropriate
sums by integrals, except that the input alphabet must be
finite for the constant-composition ensemble.

A. Connections Between the Error Exponents

The constraints on P

XY

and e

P

XY

in (41)–(43) are
given by the sets defined in (32)–(37). Since the constraint
E
P

[a(X)] = �

a

holds by definition when P

X

= Q, we have
that S iid ✓ Scost

(a) ✓ Scc

(Q) for any given cost function
a and input distribution Q. A similar observation applies to
the constraints on eP

X

, and it follows that

E

iid

r

(Q,R)  E

cost

r

(Q,R, a)  E

cc

r

(Q,R). (53)

This indicates that the constant-composition ensemble yields
the best error exponent of the three ensembles under consid-
eration. Furthermore, by setting r = r = 1 in (46), we obtain
the inequality

E

cost

0

r

(Q,R, a)  E

cost

r

(Q,R, a) (54)

where strict inequality is possible. In the case that a(x) does
not depend on x, we obtain

E

cost

r

(Q,R, a) = E

cost

0

r

(Q,R, a) = E

iid

r

(Q,R) (55)

and hence we have in general that

E

iid

r

(Q,R)  sup

a

E

cost

0

r

(Q,R, a). (56)

The following theorem gives the connection between E

cost

0

r

and E

cc

r

, and shows that the two are equal after optimization
over Q and a. This result is analogous to a connection be-
tween the i.i.d. ensemble and constant-composition ensemble
under ML decoding [19].

Theorem 5. E

cc

0

(Q, ⇢) can be expressed as

E
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e
Q2P(X )
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e

Q, ⇢, a)� (1 + ⇢)D(Qk eQ) (57)

Consequently,
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(Q,R, a). (58)

Proof: Since the supremum over a in (45) is over
all real-valued functions on X , an equivalent expression is

obtained by defining ea(x) such that e

ea(x)
= e

a(x)

Q(x)

e
Q(x)

for

some eQ(x),1 and instead taking the supremum over ea. Simple
algebraic manipulations yield
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where (60) follows from Jensen’s inequality.
It remains to show that equality holds in (60) after maxi-

mizing over eQ. First, by analyzing the Karush-Kuhn-Tucker
(KKT) conditions for the optimization problem over eQ, s and
ea associated with (60), it can be shown that

e

Q(x)

Q(x)

X

y

W (y|x)
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!
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(61)

is constant for all x such that Q(x) > 0 under the optimal
parameters, implying equality in (60). The proof is concluded
by showing that the resulting values of s and a (the latter
being computed using e

Q and ea) also satisfy the KKT con-
ditions for the optimization problem over s and a associated
with (45). Details are omitted for the sake of readability. The
equality in (58) follows immediately from (57) and the fact
that D(Qk eQ) � 0 with equality if Q =

e

Q.
It follows from (53) and Theorem 5 that Ecost

0

r

is tight with
respect to the ensemble average when the optimal values of
both Q and a are used. Hence, although E

cost

r

is a tighter
error exponent than E

cost

0

r

in general, it does not improve
on the best achievable error exponent using cost-constrained
i.i.d. random coding. Furthermore, both exponents can be
used to prove the achievability of the LM rate and no better.
However, the refined exponent E

cost

r

is useful in the case
that one does not have complete freedom in choosing Q and
a, or when exact optimization over each is not feasible. For
example, if the codebook designer does not know the channel,
then the objective in (52) cannot be computed in order to
perform the optimization.

The following theorem gives two further connections be-
tween the error exponents in the case of ML decoding.

Theorem 6. If q(x, y) = W (y|x) then

sup

a

E

cost
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r

(Q,R, a) = E

iid
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(Q,R) (62)

1We assume that e
Q(x) > 0 wherever Q(x) > 0, since all other choices

of e
Q make the objective in (57) equal to �1 and hence cannot achieve the

maximum.
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a

E
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(Q,R, a) = E

cc

r

(Q,R) (63)

for any given Q and R.

Proof: We obtain (62) by optimizing the objective in
(44) over s, and optimizing the objective in (52) over s and
a. It was shown in [1, Ex. 5.6] that the optimal value of s

in (44) is equal to 1

1+⇢

. Following the same steps, we obtain
that that the optimal value of s is in (52) is also equal to
1

1+⇢

, and the optimal cost function a(x) does not depend on
x. Combining these results, we obtain (62).

From (53), it suffices to prove that sup

a
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in order to prove (63). To this end, we will show that
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(Q, ⇢) for all ⇢ 2 [0, 1]. The case
⇢ = 0 is trivial, so we assume that ⇢ > 0. We set r = 1

and r =
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and write the expectation inside the logarithm
of (46) as

X

x,y

Q(x)W (y|x)
✓

P

x

Q(x)q(x, y)

s

e

a(x)

q(x, y)

s

e

�

a

◆

⇢

e

a(x)

e

�

a

. (64)

We assume without loss of generality that Q(x) > 0 for all x.
Introducing the distribution e

Q(x) =
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, we can write
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(65)

The summation in (65) coincides with the expectation in-
side the logarithm of (44), and with some simple algebraic
manipulation it can be shown that
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= exp

�

D(Qk eQ)
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. (66)

Substituting (65) and (66) into (46) and noting that a suitable
choice of a can yield any distribution eQ such that eQ(x) > 0

for all x, we obtain
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iid
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Taking account of (62) and Theorem 5, the right-hand side
of (67) is equal to E

cc

0

(Q, ⇢), and the proof is complete.
Under ML decoding, E

iid

r

is simply Gallager’s random-
coding error exponent [1], while E

cc

r

is Csiszár’s random-
coding error exponent for constant-composition codes [12].
We have thus shown that using an optimized cost function
a, we can achieve Csiszár’s exponent in the matched set-
ting without using constant-composition codes. However, the
analysis thus far does not give a precise connection between
E

cost

r

and E

cc

r

when the decoding metric differs from ML.

B. Multiple Cost Constraints

In this subsection, we outline how the exponent Ecc

r

can
be achieved in the mismatched setting using cost-constrained

i.i.d. random coding. To this end, we introduce the cost-
constrained i.i.d. ensemble with L cost constraints, given by
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(68)

where for each l 2 {1, ..., L}, a

l

is a cost function,
�

l

4
= E
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l

(X)] and �

l

is a positive constant. By using
the multidimensional central limit theorem and extending
the analysis of [10, Eq. (88)], it can be shown that the
normalizing constant µ

n

decays to zero sub-exponentially,
i.e. µ

n

.

= 1. Using this result and following the analysis of
the case L = 1 at the beginning of this section, we obtain
the exponent
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where

E

cost

0

(Q, ⇢, {a
l

}) 4
= sup

s�0,{r
l

},{r
l

}

� logE
"

✓E
⇥

q(X,Y )

s

e

P
L

l=1

r

l

(a

l

(X)��

l

) |Y
⇤

q(X,Y )

s

e

P
L

l=1

r

l

(a

l

(X)��

l

)

◆

⇢

#

. (70)

Here we write {a
l

} as a shorthand for {a
1

, ..., a

L

}, and
similarly for {r

l

} and {r
l

}.
The constant-composition ensemble is in fact a special case

of the ensemble in (68), since it is obtained by setting L =

|X |� 1 and �
l

< 1 for all l, and choosing the cost functions
a

1

= (1, 0, ..., 0), a

2

= (0, 1, 0, ..., 0), etc. We will show,
however, that the exponent Ecc

r

can be recovered using only
two cost functions, regardless of the cardinality of X . Setting
L = 2 and choosing r
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= 1 and r =

�1

⇢

, the
expectation in (70) becomes
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Defining eQ(x) =

Q(x)e
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(x)
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(X)

]

and following identical steps to
(65)–(67), we obtain
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By Theorem 5, the right-hand side of (72) is equal to
E

cc

0

(Q, ⇢), and we have thus recovered the exponent Ecc

r

.

C. Numerical Results

In this subsection, we plot the exponents for the channel
defined in (15) under both the minimum Hamming distance
and ML decoding metrics, again using the parameters �

0

=

0.01, �
1

= 0.05 and �

2

= 0.25. We set Q = (0.1, 0.3, 0.6),
which we have intentionally chosen suboptimally to highlight
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Figure 2. Error exponents for the channel defined in (15) with �0 = 0.01,
�1 = 0.05, �2 = 0.25 and Q = (0.1, 0.3, 0.6). The mismatched decoder
uses the minimum Hamming distance metric given in (16). The corre-
sponding achievable rates IGMI(Q), ILM(Q) and I(X;Y ) are respectively
marked on the horizontal axis.

the differences between the error exponents when the input
distribution is fixed. Under these parameters we have that
I

GMI

(Q) = 0.387, ILM(Q) = 0.449 and I(X;Y ) = 0.471

bits/use.
We evaluate the exponents using the optimization soft-

ware YALMIP [20]. The exponent Ecost

0

r

is optimized over
a, performing the optimization jointly with s in (52) and
allowing the cost function to vary across rates. The cost
function for E

cost

r

(L = 1) is chosen using an alternating
optimization between a and (s, r, r) in (46), using the a

which maximizes E

cost

0

0

as a starting point and terminating
when the change in the exponent between iterations becomes
negligible. Similarly, the cost functions for Ecost

r

(L = 2) are
chosen using an alternating optimization between (a

1

, a

2

)

and (s, r

1

, r

2

, r

1

, r

2

), initially setting both a

1

and a

2

to be
equal to the a which maximizes E

cost

0

0

.
From Figure 2, we see that E

cc

r

and E

cost

r

(L = 2) are
indistinguishable, indicating that the alternating optimization
technique was effective in finding the true exponent. The
exponent Ecost

r

(L = 1) is only marginally lower, while the
gap to E

cost

0

r

is more significant. The exponent Eiid

r

is not
only lower than each of the other exponents, but also yields a
worse achievable rate. This example demonstrates that for a
fixed Q, the refined exponent Ecost

r

(L = 1) can outperform
E

cost

0

r

even when a is optimized.

IV. CONCLUSION

We have developed a tight characterization of the random-
coding error probability for mismatched decoders. A new

achievable error exponent has been derived for the cost-
constrained i.i.d. ensemble, and alternative forms of existing
exponents for the i.i.d. ensemble and constant-composition
ensemble have been given. The exponent for each ensemble
is tight with respect to the ensemble average for any discrete
memoryless channel and decoding metric.

For any given input distribution and cost function, the error
exponent for the constant-composition ensemble is at least as
high as that of the cost-constrained i.i.d. ensemble, which in
turn is at least as high as that of the i.i.d. ensemble. We have
shown the error exponent for the constant-composition en-
semble can be recovered using cost-constrained i.i.d. random
coding with at most two cost constraints.
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