
. W e a s s u m e t h a t t h e c h a n n e l

o u t p u t a l p h a b e t h a s finite size, thoughour approach also
holds for well-behaved channels with infinite alphabet size,
like the binary-input additive white Gaussian noise (BIAWGN)
channel. We adopt Gallager’s definition of symmetric channel
[4, p. 94], that is, a channel is said symmetric if the channel
transition probability matrix (rows corresponding to input
values) is such that it can be partitioned in submatrices for
which each row is a permutation of any other row and each
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column is a permutation of any other column. Both the binary
erasure channel (BEC) and the binary symmetric channel
(BSC) are symmetric.

More precisely, in [1]–[3], it is shown that the uncoded error
probability of any BIMS channel with capacity is upper-
bounded by that of the BEC and lower-bounded by that of the
BSC of the same capacity. Similar results have been found in
[5] and [6] for the Bhattacharyya parameter, a simple upper
bound to the uncoded error probability; here, only the extremal
property of the BEC was proved. In the context of iterative de-
coding, analogous extremalproperties of the BEC and BSC
have been found [7], [8] for the building blocks of iterative
decoders for low-density parity-check codes, namely variable-
node and check-node decoders.

Upper and lower bounds to the error probability of good
codes can be given in terms of error exponents, e.g., Gallager’s
random coding bound [4, Th. 5.6.3], the sphere-packing bound
by Shannonet al. [9] and Arimoto’s strong converse bound
[10]. These exponents are expressed as optimization problems
involving Gallager’s function [4, Eq. 5.6.14]

(1)

where

(2)

and the pair is distributed according to . Here
and throughout this paper, denotes the expectation of a
random variable and all logarithms are in base 2.

Equiprobable inputs maximize the function for BIMS
channels [11, p. 203], and we henceforth assume such distribu-
tion, i.e., .

In this paper, we characterize the feasible values of

and , are given by

(3)

(4)
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Fig. 1. Region of feasible points for . The upper
curves correspond to the BSC and the lower straight lines to the BEC.

Using the capacity expressions for the BEC, , and
BSC, , we canfind the erasure/crossover prob-
ability corresponding to a given capacityand parametrize the

and function as functions of , namely

(5)

(6)

where is the binary entropy
function, and denotes the inverse of for .

are, respectively, defined as the in-
verses of (5) and (6) with respect to.

For BIMS channels, one has the bounds and
for and for . This

is a consequence of the facts that is nonnegative and non-
increasing for [4, App. 5B], that ,
and that . It is, however, not apparent whether further
limitations exist on the feasible pairs of capacityand .
Against thisfirst impression, the next theorem tightly character-
izes the set of possible pairs of capacityand function
for any BIMS channel (see Fig. 1). In the next section, we apply
this theorem and prove several analogous characterizations for
other relevant quantities in the analysis of the error probability
over BIMS channels.

Theorem 1: For any BIMS channel with capacity and func-
tion for , the following statements hold:

1) the function of the channel satisfies

(7)

2) the capacity of the channel satisfies

(8)

(9)

The extremes in (7)–(9) are attained by the BEC and the BSC.
Furthermore, for a given pair satisfying the in-

equalities in (7) or (8), there exists a BIMS channel with ca-
pacity and function . Conversely, if the inequalities do
not hold for the pair , there exists no such BIMS
channel with capacity and function .

A. Proof of Theorem 1

The proof is built around the idea that every BIMS channel
admits a decomposition into subchannels that are BSCs. This
decomposition follows directly from Gallager’s definition of
symmetric channels [4, p. 94] as used in this paper. A formal
description may be found e.g., in [3] and [7]. Here, we deem
identical the BEC with erasure probability 1 and the BSC with
crossover probability . In this decomposition, each channel
output is associated with an index which is in-
dependent of the input and depends on the channel output only.
We denote by the probability mass or density function
of subchannel , and by the corresponding binary-output
alphabet of the BSC with index. Assuming such a decompo-
sition, and since [3], [7],
we have

(10)

(11)

(12)

where denotes the capacity of subchannel.
The following lemma is proved in Appendix I.

Lemma 1: The function is concave in
for any , nondecreasing for , and nonin-
creasing for .

Noting that , and given the concavity of the
function , we apply Jensen’s inequality to obtain

(13)

(14)

(15)

The bound is obviously achieved when the channel is a BSC.
Since is concave, we can lower-bound it by

a straight line joining the points and
(see Fig. 1), and then evaluate the expec-

tation, i.e.,

(16)

(17)

(18)

This bound is obviously achieved when the channel is a BEC,
thus proving (7).
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Fig. 3. Random coding error exponents of the BEC, BSC, BIAWGN (dashed),
and Rayleigh fading BIAWGN (dash-dotted).

Expurgated error exponent: For rates below the channel
critical rate, the expurgated error exponent [4, Sec. 5.7],
given by

(27)

provides a tighter estimate of the error probability of good codes
than the random-codingexponent. The function is ex-
pressed in terms of the Bhattacharyya parameteras

(28)

Theorem 2 provides the extremes of the expurgated exponent.
Strong converse exponent: In [10], Arimoto lower-

bounded the error probability of block codes at rates above
capacity in terms of the function given by

(29)

Theorem 2 also provides the extremes of this exponent.
Sphere-packing exponent: The error probability of codes

of rate is lower-bounded by a bound that depends on the
sphere-packing exponent [9] , given by

(30)

Again, Theorem 2 provides the extremes of this exponent.
Threshold-decoding error exponents: The exponent of

random-coding bounds based on threshold decoding can also
be expressed in closed form. Shannon [12] derived the expo-
nent of Feinstein’s bound to the error probability [13]. More
generally, the exponent corresponding to a generalized form of
Feinstein’s bound [14] can be expressed as

(31)

Fig. 4. Extremes of the channel dispersion .

Theorem 2 directly gives the error exponent extremes for the
generalized Feinstein’s bound.

The exponent of the dependence-testing bound [15] is [14]

(32)

where , for , and

(33)

Following similar and somewhat simpler steps to those in the
proof of Lemma 1, one can prove that , evaluated
for a BSC with capacity , is concave in . Therefore, Theorem
2 holds and shows that the exponent of the DT bound has similar
extreme values.

Channel dispersion: Recently, the Gaussian approxima-
tion to the error probability of length- codes at rates close
to the capacity has received renewed attention. Inthis approxi-
mation, a key channel parameter is the dispersion, which for
BIMS channels [12], [15] is given by

(34)

Moreover, it can be proved that one can choose either the
function or the simpler to compute the latter derivative,
that is . As proved in Appendix I,
the third derivative of at is bounded for BIMS
channels. Thus, a second-order Taylor expansion of
around shows that has the same extremes as

. As illustration, Fig. 4 depicts the possible values of
channel dispersion as a function of the capacityof the BIMS
channel. The dashed line, which lies within the shaded area in-
dicating the feasible region of pairs capacity/dispersion, corre-
sponds to the BIAWGN channel.
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We are interested in the sign of , whose derivative is in
turn given by

(51)

We readily see that

(52)

(53)

Summarizing, since is continuous in for ,
we have that

1) in , since is nondecreasing
and ;

2) in , since is nondecreasing
and ;

3) in , since is nonincreasing
and .

The fact that concludes the proof.

APPENDIX II

We wish to prove that the partial derivative
is bounded. To this end, wefirst note that the function

can be expressed as

(54)

where is the information density, defined as

(55)

The function is a cumulant generating function.
Its third derivative evaluated at gives the third-order
cumulant, that is the third-order central moment,

(56)
The next result shows that theth absolute moment of the

information density is bounded.

Lemma 2: Consider a memoryless channel with discrete
input alphabet and arbitrary output alphabet. Then, with
equiprobable inputs, we have

(57)

Proof: We will make use of Minkowski’s inequality
where . Using the

definition of , we now have that

(58)

(59)

(60)

(61)

(62)

where we have used that [20, Eq. (4.1.37)].

Using Lemma 2, we have that for BIMS channels

(63)
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