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The extremes in (7)—(9) are attained by the BEC and the BSC.
Furthermore, for a given paifC. F(p)) satisfying the in-
equalities in (7) or (8), there exists a BIMS channel with ca-
pacity C' and functionF'(p). Conversely, if the inequalities do
not hold for the pair(C, F(p)), there exists no such BIMS

channel with capacity’ and functionF'(p).

A. Proof of Theorem 1

The proof is built around the idea that every BIMS channel
admits a decomposition into subchannels that are BSCs. This
decomposition follows directly from Gallager’s filgtion of
symmetric channels [4, p. 94] as used in this paper. A formal
description may be found e.g., in [3] and [7]. Here, we deem
identical the BEC with erasure probability 1 and the BSC with
crossover probability%. In this decomposition, each channel
outputY is associated with an index = f(Y') which is in-

_ _ _ o o i dependent of the input and depends on the channel output only.
s oo s e vear sraight Ines to e BECY.| We denote by (a) the probability mass or density function
of subchannet, and by} (a) the corresponding binary-output
alphabet of the BSC with index Assuming such a decompo-
Using the capacity expressions for the BE(* 21 — ¢, and  Sition, and sincéyx (y|z) = Py x, 4(y|z,a)Pa(a) [3], [7],
BSC,C"** £1 — h(e), we canfind the erasure/crossover probWe have

ability corresponding to a given capacityand parametrize the E [P ) »(Y|X’)1+v IY] P
FPe¢(p) and functionF***(p) as functions of”', namely Flp)=E ( Y T ) (10)
. ) Py x(Y|X)™
E (P; C) = (2 - 1)0 1 (5) E |E E[PYlX-l(Y'X’A)ﬁD/A] ' A
F(p0) =277 (71— C) ™ - Pyx.a(Y|X, A)T7
_ 1; 1+p 11
+(1-hT-0) ) (6) bec -
=E [F"(p: C(A))] (12)

A

whereh(p) = —plog p—(1—p) log(1—p) is the binary entropy
function, and: ! (x) denotes the inverse &fp) for p € [0, 1].
CPec(F(p)), C™<(F(p)) are, respectively, dimed as the in-
verses of (5) and (6) with respectfa Lemma 1: The functionF?(p; C') is concave inC' € [0, 1]
For BIMS channels, one has the boutids C < 1 and0 < foranyp > —1, nondecreasing for1 < p < 0, and nonin-
F(p) < 1forp>0andl < F(p) < 2for—1 < p <0.This creasing forp > 0.
is a consequence of the facts t) is nonnegative and non-  Noting thatE[C'(A)] = €, and given the concavity of the
increasing forp > —1 [4, App. 5B], thatlim,_. _; F(p) = 2, function>**(p; C'), we apply Jensen’s inequality to obtain
and thatF'(0) = 1. It is, however, not apparent whether further

whereC(a) denotes the capacity of subchanael
The following lemma is proved in Appendix .

limitations exist on the feasible pairs of capadityand F'(p). . bsc/

Against thisfirst impression, the next theorem tightly character- F(p)=E [F (p; C(A))] (13)
izes the set of possible pairs of capadityand F(p) function < FP(p; E[C(A))]) (14)
for any BIMS channel (see Fig. 1). In the next section, we apply = FP(; O). (15)

this theorem and prove severaladogous characteations for

other relevant quantities in thealysis of the error probability The bound is obviously achieved when the channel is a BSC.
over BIMS channels. Since FP*(p; C) is concave, we can lower-bound it by
a straight line joining the pointg™<(p;0) (C = 0) and
FP<(p:1) (C = 1) (see Fig. 1), and then evaluate the expec-
tation, i.e.,

Theorem 1: For any BIMS channel with capacity and func-
tion F(p) for p > —1, the following statements hold:
1) the functionF'(p) of the channel saties

Fbsc([); o) > Fbsc(p; 0)+C (Fb“(p; 1) - Fbsc(pQ 0))

FY(p;C) < F(p) < FP(p; O); (7)
(P C) < F( (; C) (16)
2) the capacityC' of the channel satiges =1+C(277-1) a7
— Fhec(p; C) (18)
OV (F(p)) < C < C*(F(p)), ~1<p<0 (8) Thisboundis obviously achieved when the channel is a BEC,
C(F(p)) < C < C™(F(p)), p=0. (9) thus proving (7).
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Fig. 3. Random coding error exponents of the BEC, BSC, BIAWGN (dashquig_ 4. Extremes of the channel dispersiotC).
and Rayleigh fading BIAWGN (dash-dotted).

Theorem 2 directly gives the error exponent extremes for the
generalized Feinstein’s bound.
The exponent of the dependence-testing bound [15] is [14]

Expurgated error exponent: For rates below the channel
critical rate, the expurgated error exponéit(R) [4, Sec. 5.7],
given by

Fex(R) = max Bu(p) = R, @7) E3(R) = max Fo(p,s = 1) — pR (32)
= 0<p<l
provides a tighter estimate of the error probability of good cod
than the random-codingxponent. The functio,(p) is ex-

pressed in terms of the Bhattacharyya param@tas

\e}VﬁTereEg(/LS) £ _log F(p,s),fors > 0, and

1427 F(p.s)2E

E.(p) = —plog —5—. (28) (33)

E[Pyix(YIX)v]\"
Py x (Y|X)s

Theorem 2 provides the extremes of the expurgated exponefollowing similar and somewhat simpler steps to those in the
Strong converse exponent: In [10], Arimoto lower- proof of Lemma 1, one can prove th&tp, s = 1), evaluated
bounded the error probability of block codes at rates abofer a BSC with capacity’, is concave irC’. Therefore, Theorem

capacity in terms of the functiof..(?) given by 2 holds and shows that the exponent of the DT bound has similar
extreme values.
E.(R) = sup_ Eq (p) — pR. (29) Channel dispersion: Recently, the Gaussian approxima-
—1<p<0

tion to the error probability”, of lengths codes at rates close

Theorem 2 also provides the extremes of this exponent, 10 the capacity has received rerehattention. Irthis approxi-
Sphere-packing exponent: The error probability of codes mation, a key channel par_am_eter is the disper¥iomhich for
of rate 2 is lower-bounded by a bound that depends on tfg/MS channels [12], [15] is given by
sphere-packing exponent B}, (1?), given by
1 1
Ey(R) = sup Ey(p) — pR. (30) V= FR=C) —Ey(p=0). (34)
Again, Theorem 2 provides the extremes of this exponent. Moreover, it can be proved that one can choose eithefie)
Threshold-decoding error exponents: The exponent of function orthe slmpIeEo(p,l)to compute the latter derivative,
random-coding bounds based on threshold decoding can df$@t iS£q(p = 0) = Eg(p = 0,1). As proved in Appendix |,
be expressed in closed form. Shannon [12] derived the ex€ third derivative o (p, 1) atp = 0 is bounded for BIMS
nent of Feinstein's bound to the error probability [13]. Mor&hannels. Thus, a second-order Taylor expansiofigp, 1)

generally, the exponent corresponding to a generalized form@Punds = 0 shows thatfy (0, 1) has the same extremes as
Feinstein’s bound [14] can be expressed as Eqo(p,1). As illustration, Fig. 4 depicts the possible values of
channel dispersion as a function of the capa€itgf the BIMS

channel. The dashed line, whidlkd within the shaded area in-
Eo(p) —pR (31) dicating the feasible region of pairs capacity/dispersion, corre-
>0 l4+p sponds to the BIAWGN channel.
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We are interested in the sign @f(z, p), whose derivative is in
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Proof: We will make use of M|nkowsk| S mequalltN/A +

turn given by Blli < ||lAllx + ||B]l& where||Al|, £ (E[|A|¥])*. Using the
D0z, p) | definition of ¢( X, Y"), we now have that
JgolZ, p) nz e
oy (17 (z T+ zl+p) . (51)
. i(X;Y X;Y
We readily see that €5 Y7) = I¢ M
Z \HPY\X(YV )
. < |[log = +I(X;Y) (58)
dgo(z, e
M0 >0 pe(-L] 52 Prx(1X) |
G0ol220) <, e (1, +0) (53) 2 Prix(Yle')
— =0, € |1, +00). < 2log |X log *———— 59
| k
SrL]Jmmz;\rr]izting, sinc@(z, p) is continuous irp for p > —1, Y Pyix (Y2 +
we have thai =
. . . . < : — S
1) %Zp”) < 0inp € (—1,0], sinceyo(z, p) is nondecreasing < 2log| X+ In 2 g Py x(Y]X) b (60)
andgo(z, p) < go(z,0) = 0; B
2) %(Z (j; iQ P e( [00.,)1], s(i]ncego(zm) is nondecreasing B} }1 {Z Pyix(Y])) T\ *
andgolz, p) 2 golz, U} =4, < 2log|X| + — + — =
3) %ﬂ”) > 0inp e [1,00), sincego(z, p) is nonincreasing ' In2  In L Py x(Y]X)
andgo(z, p) > lim, e go(z, p) = 0. ) (61)
The fact thay(z,0) = 0 concludes the proof. k 3 )
<210g|)(|_|__+ﬁ)(|;7 (62)
n

APPENDIX I

We wish to prove that the partial derlvat|\?eM| _
is bounded. To this end, wérst note that the funct|on
Ey(p,s = 1) can be expressed as

Eo(p,s =1) = —logE {2*"“&“} (54)
wherei(z; y) is the information density, dimed as
) Py x(y|z)
A VXY
t(x;y) = log ————= 55
(w;y) = log Pr o) (55)

The functionEy(p, s = 1) is a cumulant generating function.
Its third derivative evaluated at = 0 gives the third-order
cumulant, that is the third-order central moment,

PEy(p, s=1
%) :[E[(i(X;Y) - I(X;Y))s} (In2)2.
(56)
The next result shows that thgh absolute moment of the
information density is bounded.

p=0

Lemma 2: Consider a memoryless channel with discrete
input alphabetY and arbitrary output alphabgt. Then, with
equiprobable inputs, we have

i

[E[|¢(X;Y)—I(X;Y)\ } (
(57)

83E0(pa 8§ = 1)

where we have used thatz < k:(:r,f —1)[20, Eq. (4.1.37)|m

Using Lemma 2, we have that for BIMS channels

A 3 ®
< (In2)? (z + ﬁ(l + 23)> . (63)

apd

p=0
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