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Abstract—This paper studies communication outages in mul-
tiple-input multiple-output (MIMO) block-fading channels with
imperfect channel state information at the receiver (CSIR). Using
mismatched decoding error exponents, we prove the achievability
of the generalized outage probability, the probability that the gen-
eralized mutual information (GMI) is less than the data rate, and
show that this probability is the fundamental limit for independent
and identically distributed (i.i.d.) codebooks. Then, using nearest
neighbor decoding, we study the generalized outage probability
in the high signal-to-noise ratio (SNR) regime for random codes
with Gaussian and discrete signal constellations. In particular, we
study the SNR exponent, which is defined as the high-SNR slope of
the error probability curve on a logarithmic-logarithmic scale. We
show that the maximum achievable SNR exponent of the imper-
fect CSIR case is given by the SNR exponent of the perfect CSIR
case times the minimum of one and the channel estimation error
diversity. Random codes with Gaussian constellations achieve the
optimal SNR exponent with finite block length as long as the block
length is larger than a threshold. On the other hand, random codes
with discrete constellations achieve the optimal SNR exponent
with block length growing with the logarithm of the SNR. The
results hold for many fading distributions, including Rayleigh,
Rician, Nakagami- , Nakagami- and Weibull as well as for
optical wireless scintillation distributions such as lognormal-Rice
and gamma-gamma.

Index Terms—Block-fading channels, channel state information,
diversity, error exponent, generalized mutual information (GMI),
imperfect channel state information, MIMO, multiple antenna,
nearest neighbor decoding, outage probability, SNR exponent.

I. INTRODUCTION

I N recent years, the demands for fast wireless communi-
cation access have increased dramatically. While a large

number of delay-limited applications requiring high data rate
have successfully been deployed for wired media, the same de-
velopment remains a challenge for wireless communications.
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One of the main challenges is fading, i.e., the fluctuations in the
received signal strength due to mobility and multiple path prop-
agation [1].

Understanding the fundamental limits of delay-limited
transmission is therefore critical to design efficient codes
for such applications. The block-fading channel is a relevant
model to study the transmission of delay-limited applications
over slowly-varying fading. Within a block-fading period, the
channel gain remains constant, varying from block to block
according to some underlying distribution. Modern commu-
nication systems utilising frequency hopping schemes such
as Global System for Mobile Communications (GSM) and
multi-carrier modulation such as Orthogonal-Frequency Divi-
sion Multiplexing (OFDM) are practical examples that are well
modelled by the block-fading channel.

Reliable communication over block-fading channels has tra-
ditionally been studied under the assumption of perfect channel
state information at the receiver (CSIR) [2]–[7]. Since only a fi-
nite number of fading realizations are spanned in a single code-
word, block-fading channel is not information stable [8]. The
input-output mutual information between the transmitted and
the received codewords is varying in a random manner and the
channel is considered to be non-ergodic. For most fading dis-
tributions, the Shannon capacity is strictly zero [6]. Based on
error exponent considerations, Malkämaki and Leib [5] showed
that the outage probability, i.e., the probability that the mu-
tual information is smaller than the target transmission rate [2],
[3], is the natural fundamental limit of the channel. References
[4]–[6] showed that optimal codes for the block-fading channel
should be maximum-distance separable (MDS) on a blockwise
basis, i.e., achieving the Singleton bound on the blockwise Ham-
ming distance of the code with equality. Families of blockwise
MDS codes based on convolutional codes [5], [6], turbo codes
[9], low-density parity check (LDPC) codes [10] and Reed-
Solomon codes [4] have also been proposed in the literature.
Following the footsteps of [11], references [6], [7] proved that
the outage probability as a function of the signal-to-noise ratio
(SNR) decays linearly in a log-log scale with a slope given by
the so-called outage diversity or SNR exponent. This SNR expo-
nent is precisely given by the Singleton bound and shown to be
achieved by random codes constructed over discrete signal con-
stellations, providing the optimal tradeoff between the SNR ex-
ponent (diversity) and the target data rate [6]. On the other hand,
random codes with Gaussian constellations always achieve the
maximum diversity offered by the channel.

For perfect CSIR, nearest neighbor decoding yields minimal
error probability [5], [12]. As such, nearest neighbor decoding is
commonly used in practical wireless systems. The perfect CSIR
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assumption, however, implies that the channel estimator pro-
vides the decoder with a perfectly accurate channel estimate.
This assumption is too optimistic and very difficult to guarantee
in practice. The time-varying fading characteristics imply that
the receiver is likely to be unable to keep track of the channel
fluctuations precisely. This makes nearest neighbor decoding in-
herently suboptimal.

This paper studies nearest neighbor decoding for transmis-
sion over multiple-input multiple-output (MIMO) block-fading
channels when the receiver is unable to obtain the perfect CSIR.
We approach the problem by studying the achievable rates for
nearest neighbor decoder with imperfect CSIR. In particular,
for fixed channel and channel estimate realizations, we study
the achievability of the generalized mutual information (GMI)
[13], [14]. The GMI is generally known to be one of the achiev-
able rates when a fixed decoding rule -which is not necessarily
matched to the channel- is employed [15], [16]. In our case,
it characterizes the maximum communication rate under fixed
fading and fading estimate realizations, below which the av-
erage error probability is guaranteed to vanish as the codeword
length tends to infinity. We further analyze the GMI by studying
its important properties. Due to the time-varying fading and its
corresponding estimate, we introduce the generalized outage
probability, the probability that the GMI is less than the target
rate, as an achievable error probability performance for MIMO
block-fading channels. By achievability, we mean that random
codes are able to achieve this performance but it does not mean
that there are no codes that perform better than the generalized
outage probability. However, as shown in [16]–[18], indepen-
dent and identically distributed (i.i.d.) codebooks have a GMI
converse, i.e., no rate larger than the GMI can be transmitted
with vanishing error probability for i.i.d. codebooks. Thus, for
i.i.d. codebooks, the GMI is the largest achievable rate and the
generalized outage probability becomes the fundamental limit
for block-fading channels with mismatched CSIR.

We are particularly interested in the high-SNR slope of the
error probability (plotted in a log-log curve) captured by the
following SNR exponent (diversity gain)

(1)

where denotes the probability of decoding error as a
function of the SNR, . We characterize this SNR exponent
using the generalized outage probability for the converse and
generalized Gallager exponents [13], [14] for the achievability.
Our main results show that the generalized outage SNR expo-
nent with imperfect CSIR is given by the simple formula

(2)

where is the perfect-CSIR outage SNR exponent and is
the channel estimation error diversity, measuring the decay of
the channel estimation error variance as a function of the SNR.
Interestingly, this relationship holds for both Gaussian and dis-
crete-input codebooks. We further show that the above SNR ex-
ponent can be achieved by Gaussian random codes with finite
block length. The minimum block length achieving is de-
termined by a channel parameter representing the fading distri-

bution, the number of transmit antennas and the number of re-
ceive antennas. On the other hand, discrete-input random codes
are only able to achieve with block length growing with
the logarithm of the SNR. These results validate the use of per-
fect-CSIR code designs and provide guidelines for designing
reliable channel estimators that achieve the optimal SNR expo-
nents. The theorem also generalizes the results in [6], [11], [19]
for MIMO block-fading channels with imperfect CSIR. Note
that the perfect CSIR condition is easily recovered by letting
to infinity. Finally, the results are applicable to a wide-range of
fading distributions including Rayleigh, Rician, Nakagami- ,
Nakagami- and Weibull fading models; it can also be directly
extended to optical wireless scintillation channels based on log-
normal-Rice and gamma-gamma distributions [20]–[22].

There are several theoretical implications that may be ex-
tracted from this paper. First, with the SNR exponent as the per-
formance benchmark, we give a meaningful channel estimation
design criterion. As long as we can construct channel estima-
tion schemes with decay in channel estimation error variance

or faster, the perfect CSIR exponent is achievable with
mismatched CSIR. Second, this criterion is valid for code de-
sign based on i.i.d. Gaussian and discrete inputs over MIMO
block-fading channels. Third, the results validate the use of per-
fect CSIR code design under imperfect CSIR as long as we are
able to construct a reliable channel estimator with this criterion.

Throughout the paper, the following notation is used. Scalar,
vector and matrix variables are characterized with normal (non-
boldfaced), boldfaced lowercase, and boldfaced uppercase let-
ters, respectively. denotes the identity matrix and
the symbols and represent the conjugate transpose and
the Frobenius norm for a matrix (or equivalently the Euclidean
norm for a vector). Random variables are denoted by uppercase
letters and realizations by lowercase letters ; random vec-
tors are denoted by lowercase sans serif letters and realizations
by boldfaced lowercase letters ; random matrices are denoted
by uppercase sans serif letters and realizations by boldfaced
uppercase letters . The exponential equality in-
dicates that as defined in [11]. The ex-

ponential inequalities and are similarly defined. The sym-
bols , , and describe componentwise inequality , ,

and . Expectation is denoted by . Sets are denoted by
calligraphic fonts with the complement denoted by superscript
. The indicator function is defined by ; denotes

the largest (smallest) integer smaller (larger) than or equal to ,
while .

The rest of the paper is organized as follows. Section II
introduces the channel, imperfect CSIR and fading models.
Section III reviews basic material on error exponents for the
block-fading channel. Section IV discusses the achievability of
the generalized outage probability using mismatched decoding
arguments. Section V establishes our main theorem stated in
(2), discusses the main findings, shows numerical evidence
and provides important remarks. Section VI discusses some
important observations on the results and extension to optical
wireless scintillation channels. Section VII summarizes the
important points of the paper. Proofs of theorems, propositions
and lemmas can be found in the appendices.
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TABLE I
PDF FOR DIFFERENT FADING DISTRIBUTION

II. SYSTEM MODEL

Consider transmission over a MIMO block-fading channel
with transmit antennas, receive antennas and fading
blocks corrupted by additive white Gaussian noise (AWGN) and
affected by an i.i.d. channel fading matrix, ,

. The input-output relationship of the channel is

(3)

where , , are the re-
ceived, transmitted and noise signal matrices corresponding to
block ; denotes the channel block length. We assume that the
entries of are i.i.d. complex circularly symmetric Gaussian
random variables with zero mean and unit variance.

At the transmitter end, we consider coding schemes of fixed
rate and length , whose codewords are defined as

, where denotes the signal
constellation of size . By fixed rate, we mean that the
coding rate is a positive constant and independent of the SNR;
thus the multiplexing gain is zero [11]. The multiplexing gain
was introduced in [11] and defined as

(4)

The multiplexing gain characterizes the high-SNR linear gain
of the coding rate with respect to the logarithm of the SNR. A
nonzero multiplexing gain is only possible with an input con-
stellation that has continuous probability distribution (such as
Gaussian input) or an input constellation that has discrete prob-
ability distribution but with alphabet size increasing with
the SNR. Since many practical systems employ coding schemes
with fixed code rate and finite alphabet size, the assumption
of zero multiplexing gain is highly relevant in practice. Fur-
thermore, codewords are assumed to satisfy the average input
power constraint . Herein we assume that no
channel state information at the transmitter (CSIT) is available;
thus, the uniform power allocation over all fading blocks and
transmit antennas is used.

The entries of are i.i.d. random variables that are drawn
according to a certain probability distribution. We use the gen-
eral fading model of [23], [24]. Let be the channel coeffi-
cient for fading block , receive antenna and transmit antenna

. Then, the probability density function (pdf) of is given
by

(5)

where , , , and are
constants (finite and SNR independent). This model subsumes
a number of widely used fading distributions such as Rayleigh,
Rician, Nakagami- , Nakagami- and
Weibull as tabulated in Table I. For Rayleigh and Rician
fading channels, the above pdf represents the pdf of the com-
plex Gaussian random variable with independent real and imag-
inary parts. For Nakagami- , Weibull and Nakagami- fading
channels, the above pdf is derived assuming that magnitude and
phase are independently distributed, and that the phase is uni-
formly distributed over . Furthermore, we assume that the
average fading gain is normalized to one, i.e., .

At the receiver side, when perfect CSIR is assumed, nearest
neighbor decoding is optimal in minimizing the word error
probability. However, practical systems employ channel esti-
mators that yield accurate yet imperfect channel estimates. We
model the channel estimate as

(6)

where , are the noisy channel estimate and the
channel estimation error, respectively. In particular, the entries
of are assumed to be independent of the entries of and
to have an i.i.d. complex circularly symmetric Gaussian distri-
bution with zero mean and variance equal to

(7)

Thus, we have assumed a family of channel estimation schemes
for which the CSIR noise variance is a decreasing function of the
SNR. This model is widely used in pilot-based channel estima-
tion for which the error variance is proportional to the reciprocal
of the pilot SNR [25], [26]. We generalize this reciprocal of the
pilot SNR with the parameter which denotes the channel es-
timation error diversity.

A nearest neighbor decoder is used to infer the transmitted
message. Due to its optimality under perfect CSIR and its sim-
plicity, this decoder is widely used in practice even when perfect
CSIR cannot be guaranteed. With imperfect CSIR, the decoder
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treats the imperfect channel estimate as if it were perfect. As-
suming a memoryless channel, it performs decoding by calcu-
lating the following metric:

(8)

for each channel use, i.e., for , . The
decision is made at the end of channel uses for a single
codeword.

Recall that , and are the elements of
, and at row and column ,

respectively. We define ,

and . Then, ,
and are matrices whose element at row and

column is given by , and , respectively, for
all and . We use this change of
random variables to analyze the communication performance
in the high-SNR regime.

III. MUTUAL INFORMATION AND OUTAGE PROBABILITY

It has been shown in [5], [12] that the average error proba-
bility for the ensemble of random codes of rate and a fixed
channel realization , input distribution over al-
phabet and perfect CSIR is given by

(9)

where

(10)

is the error exponent for channel realization and

(11)

is the Gallager function for a given fading realization [12].
Note that the inner expectation is taken over , while the outer
expectation is taken over , for a fixed fading realization

. Remark that the upper bound in (9) corresponds to the av-
erage over all codebooks whose entries have been generated
i.i.d. (i.i.d. codebooks). The ensemble-average in (9) implies
that there exists at least one code in the ensemble whose av-
erage error probability is bounded as
[12]. Then, the average error probability for that code averaged
over all fading states is

(12)

Basic error exponent results show that is positive
only when , where is the input-output mu-
tual information and is a small number, and zero oth-
erwise. The instantaneous mutual information for block-fading
channels is easily expressed as

(13)

where is the mutual information of an AWGN MIMO
channel for a given channel matrix . In particular, assuming
uniform power distribution1 the mutual information is given by

(14)

for Gaussian inputs and

(15)

for discrete inputs2, where is the matrix determinant oper-
ator [27] and . To the best of our knowledge there
is no closed form expression for the expectation term in the mu-
tual information for discrete inputs. However, this expectation
can be computed efficiently using Gauss-Hermite quadratures
[28] for systems of small size; for larger sizes the above expec-
tation needs to be evaluated using Monte Carlo methods.

Using Arimoto’s converse [29] it is possible to show that the
mutual information with an optimized3 input distribution over
alphabet , , is the largest rate that can be reliably trans-
mitted. There is no rate larger than having a vanishing
error probability. This converse is strong in the sense that for
rates larger than , the error probability tends to one for
sufficiently large block length. This converse is also the “dual”
to the Gallager theorem for rates above the mutual information,
i.e., for a fixed channel realization the average error proba-
bility of any coding scheme constructed from the alphabet is
lower-bounded by [29]

(16)

where

(17)

1This assumption is mainly due to the unavailability of channel state informa-
tion at the transmitter (CSIT). Hence, the reasonable way to allocate the power
across all transmit antennas and all fading blocks is by distributing the power
equally. Note that this assumption is optimal at high SNR [11].

2This expression assumes equiprobable inputs. The results of the paper re-
main unchanged for an arbitrary distribution over , since for high the
equiprobable distribution is optimal.

3Herein optimality refers to an input distribution over alphabet that maxi-
mizes mutual information . The maximized mutual information is
usually called as capacity for a given input alphabet and channel .
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is of the same form as (10) except for the range of in the
supremum and for the infimum of the probability measure
over alphabet . With channel realization being random, over
all fading coefficients, the average error probability becomes

(18)

It has been shown in [29] that is positive whenever
and zero otherwise. Let be the input distribu-

tion over alphabet that achieves . Suppose that
is used to evaluate the Gallager error exponent (10). Then, it fol-
lows from [5], [12], [29] that is equal to , and for
sufficiently large , (12) and (18) converge and we obtain that
[5]

(19)

(20)

which is the information outage probability [3]. The above re-
sults show the convergence of the random coding achievability
and converse to the outage probability as the block length in-
creases to infinity. These results also imply that the outage prob-
ability is the natural fundamental limit for block-fading chan-
nels.

One has to note that the convergence in (20) holds when the
capacity-achieving distribution for a given alphabet ,
is used to construct codebooks. For a fixed input distribution

, the probability in (19) only characterizes random coding
achievability bound to the average error probability; it does not
imply anything on the converse bound for any given code. For
continuous alphabet, it is well known that i.i.d. Gaussian in-
puts achieve the capacity for AWGN channels. On the other
hand, for discrete inputs with alphabet size , the ca-
pacity-achieving distribution for AWGN channels depends on
the operating SNR. For high SNR, equiprobable distribution
over is optimal.

Definition 1 (Outage Diversity): The outage diversity or the
outage SNR exponent, , is defined as the high-SNR slope of
the outage probability curve, as a function of the SNR, in log-log
scale plot when the receiver has access to perfect CSIR

(21)

Suppose that is a finite real-valued quantity, which is the
case for many fading distributions. Then, we have the following
lemma on the strict lower bound to the error probability at high
SNR [11].

Lemma 1 (Converse Outage Bound): For any coding scheme
with any arbitrary length, the average error probability at high
SNR is lower-bounded as

(22)

Proof: This lemma has been proven using Fano’s in-
equality in [11]. The claim in [11] works for finite length
codes when the multiplexing gain is nonzero. For fixed-rate

transmission (zero multiplexing gain), it will no longer work
unless we assume that the block length grows with .
Here, we provide an alternative proof to this lemma based on
Arimoto’s converse. Recall is positive if and only
if and zero otherwise. When the error exponent

, then . Therefore, the error
probability can be lower-bounded as

(23)

(24)

(25)

(26)

(27)

Note that for the set , we have that

(28)

with strict inequality due to . Since the
right-hand side (RHS) of Arimoto’s converse is always
bounded by zero, as the SNR tends to infinity, the integral term
of decays, as a function of the SNR, at the rate
faster than or equal to the decaying rate of . Thus, the
last exponential equation follows accordingly.

Equation (20) shows that the converse is tight with the achiev-
ability result suggesting that the optimal SNR exponent for large
block length is given by the outage diversity. On the other hand,
the lower bound of the error probability in Lemma 1 implies
that the outage diversity provides an upper bound for the SNR
exponent of any coding scheme constructed from the alphabet

with a fixed block length . The error probability perfor-
mance of good codes typically improves as the block length in-
creases. Thus, the outage probability, which characterizes the
dominating error event for large code length provides an upper
bound to the SNR exponent of the error probability for fixed
block-length codes. Furthermore, the proof in Lemma 1 is more
general than the proof based on Fano’s inequality in [11] in the
sense that the proof is well applicable for any zero or nonzero
multiplexing gain coding schemes and fixed block length.

We recall existing results on the optimal SNR exponents for
both Gaussian and discrete inputs with perfect CSIR.

Lemma 2: Consider transmission over a MIMO block-fading
channel at fixed rate with fading model parameters , ,

, and as described in (5) and perfect CSIR using Gaussian
constellation and discrete signal constellation of size . Then,

(29)

where

(30)
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and

(31)

is the Singleton bound. The exponent is achieved by
random codes for both Gaussian and equiprobable discrete
inputs.

Proof: For Gaussian inputs, the proof is outlined in [23]
by setting zero multiplexing gain. The proof for discrete inputs
extending the results of [30] to the general fading model in (5)
is outlined in Appendix A.

The results in Lemma 2 show the interplay among the system
and the channel parameters in determining the optimal SNR ex-
ponents. For any positive target rate, Gaussian inputs achieve the
maximum diversity. On the other hand, the diversity achieved by
the discrete input has a tradeoff with the target rate given by the
Singleton bound. Note that

(32)

which implies that sufficiently large constellations can always
achieve maximum diversity. The diversity characterization for
discrete inputs provides a benchmark for the error performance
of practical codes. A good practical code must have an SNR
exponent (1) that achieves the Singleton bound.

IV. GALLAGER EXPONENTS, GMI AND GENERALIZED OUTAGE

When the nearest neighbor decoder has no perfect knowledge
of but rather has access to the noisy estimates for all

, then the decoder is mismatched [13]–[16]. This
problem is generally encountered for a wide-range of commu-
nication systems, where the only way to obtain CSIR is via a
channel estimator, inducing accurate yet imperfect channel co-
efficients. In this situation, the decoder treats the channel esti-
mate as if it was the true channel.

Following the same steps outlined in Section III, we can
upper-bound the error probability of the ensemble of random
codes as [13] (see also [14] for a detailed derivation)

(33)

where now the mismatched decoding error exponent is

(34)

and

(35)

is the generalized Gallager function for a given fading realiza-
tion and estimation error [13].

Remark 1: The use of the decoder metric here is not
only restricted to the distance metric with noisy channel esti-
mate in (8). The random coding upper bound (33) holds for any
positive decoding metric.

Proposition 1 (Concavity of ): For a fixed input
distribution, the generalized Gallager function, , is
a concave function of for and of for .

Proof: See Appendix B.

Since is concave in for , the max-
imum slope of with respect to occurs at .
The maximization over results in a maximum slope equal to
the generalized mutual information (GMI) [13], [15], given by

(36)

where

(37)

Note that if , then is equal to . The eval-
uation of (37) gives

(38)

for Gaussian inputs, where

(39)

and

(40)

for discrete inputs.

Proposition 2 (Nonnegativity of the GMI): For the decoding
metric in (8), is always nonnegative, i.e.,

(41)

Proof: See Appendix B.
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Proposition 3 (GMI Upper Bound): The GMI is
upper-bounded as

(42)

Suppose that the supremum on the RHS of (42) is achieved for
some . Let be

(43)

Equality in (42) occurs if , .
Proof: See Appendix B.

The maximum slope analysis on the concave function
(due to Proposition 1) shows that the exponent

is only positive whenever , and
zero otherwise, proving the achievability of . Then,
following the same argument as the one from [12], there exists
at least one code in the ensemble such that the average error
probability -averaged over all fading and its corresponding
estimate states- is bounded as

(44)

which, for large becomes

(45)

(46)

the generalized outage probability.
The above analysis shows the achievability of

which indicates that for large one may find codes whose
error probability approaches . Unfortunately, there are
no generally tight converse results for mismatched decoding
[15] which implies that one might be able to find codes whose
error probability for large might be lower than .
However, as shown in [16]–[18], a converse exists for i.i.d.
codebooks, i.e., no rate larger than the GMI can be transmitted
with vanishing error probability.

Proposition 4 (Generalized Outage Converse): For i.i.d.
codebooks with sufficiently large block length, we have that

(47)

Proof: The inequality of comes
from the GMI converse in [18] for i.i.d. codebooks. Fur-
thermore, due to the data-processing inequality for error
exponents [13], [14], we obtain that

[15], and hence .

From the above proposition, we say that the generalized
outage probability is the fundamental limit for i.i.d. codebooks.
With perfect CSIR, the nearest neighbor decoder yields the
minimal average error probability. Thus, with imperfect CSIR,
the average error probability can never be smaller than that
with perfect CSIR. This implies that the converse outage bound
in Lemma 1 also applies to the nearest neighbor decoder with

mismatched CSIR. Then, as the SNR tends to infinity, the decay
in average error probability for this mismatched decoder as a
function of the SNR can never be larger than .

V. GENERALIZED OUTAGE DIVERSITY

In this section, we describe the behavior of the generalized
outage probability for codebooks that are generated from
i.i.d. Gaussian and discrete inputs. In particular, we study the
high-SNR regime characterized by the generalized outage
diversity, which is defined as follows.

Definition 2 (Generalized Outage Diversity): The general-
ized outage diversity or the generalized outage SNR exponent,

, is defined by the high-SNR slope of the generalized
outage probability curve in log-log scale plot when the receiver
only knows the noisy CSIR

(48)

This definition can be viewed as the extension of the SNR expo-
nent definition, for perfect CSIR case, where now we have
mismatched CSIR.

From the data-processing inequality summarized in Proposi-
tion 4, it is straightforward to show that the mismatched SNR
exponent is upper-bounded as . However, this
relationship does not provide an explicit characterization of
the mismatched-CSIR SNR exponent as a function of
the matched-CSIR SNR exponent . In the following, we
provide a precise fundamental relationship of and .
Furthermore, we also show the way to achieve the optimal SNR
exponent using random codes of a given block length , which
is of practical interest.

The converse results, which use the large block length results
on the generalized outage probability explained in Proposition
4, are summarized in the following theorem.

Theorem 1 (Converse): Consider the MIMO block-fading
channel, imperfect CSIR and fading model described by (3), (6)
and (5), respectively. Then, for high SNR the generalized outage
probability using nearest neighbor decoding (8) behaves as

(49)

where

(50)

is the generalized outage SNR exponent or the generalized
outage diversity. This relationship holds for code constructions
based on both i.i.d. Gaussian and discrete inputs.

Proof: We use bounding techniques to prove the result. The
lower bound is derived by evaluating the GMI structure for each
type of input distribution. On the other hand, the upper bound
uses the simple upper bound in Proposition 3. See Appendices
C (for discrete inputs) and D (for Gaussian inputs), respectively,
for the details.

Remark 2: Standard proof methodologies to derive the upper
bound to the SNR exponent for MIMO channels with perfect
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CSIR employ a genie-aided receiver [30]. However, this ap-
proach fails for mismatched CSIR. In general, mismatched de-
coding introduces additional interference during the decoding
process and this interference may not be reduced by having that
genie-aided receiver.

The converse in Theorem 1 gives a strict upper bound to the
decaying rate of the average error probability as a function of
the SNR for sufficiently long codes. The results also provide a
precise fundamental relationship between the perfect and im-
perfect CSIR SNR exponents. Suppose that a noisy channel es-
timator produces a Gaussian random estimation error with vari-
ance . Then, Theorem 1 shows that the imperfect-
CSIR SNR exponent is a linear function of the perfect-CSIR
SNR exponent with a linear scaling factor of .

The intuition on the scaling factor is as follows.
Channel estimation errors introduce supplementary outage
events, adding to those due to deep fades [6], [11]. Therefore,
the generalized outage set contains the perfect-CSIR outage
set, and a generalized outage occurs when there is a deep fade,
or when the channel estimation error is high.

The above analysis also shows that the phases of the fading
and of the channel estimation error play no role in determining
the SNR exponents for both Gaussian and discrete signal con-
stellations. However, as shown in the proof (Appendix C), it
seems that the phases affect high-SNR outage events for discrete
signal constellations; the exact effect depends on the configura-
tion of the specific signal constellation.

For large block length, as shown in (46) and (47), it is suffi-
cient to study to characterize the error probability for
i.i.d. codebooks. However, practical wireless communications
typically operate with a fixed and finite block length. Herein, we
present the results of achievable random coding SNR exponents
for a given block length . In this context, we use the general-
ized Gallager exponents [13], [14] and evaluate the lower-bound
to the SNR exponents for any arbitrary length.

To prove the general theorem, we first state the SNR exponent
achieved by random codes with Gaussian constellations for any

in the fading model (5). We will then provide a tighter block
length threshold for .

Theorem 2 (Achievability—Gaussian Inputs): Consider the
MIMO block-fading channel (3) with fading distribution in (5)
and data rate growing with the logarithm of the SNR at multi-
plexing gain as defined in (4). In the presence of mis-
matched CSIR (6), there exists a Gaussian random code whose
average error probability is upper-bounded as

(51)

where

(52)

and is the complement of the set

(53)

where

(54)

(55)

The function can be computed explicitly for any block
length .

Proof: See Appendix E.

Corollary 1: Following Theorem 2, the SNR exponent lower
bound for Gaussian input with zero multiplexing gain is given
by

for
otherwise.

(56)
Proof: The proof is obtained by solving the infimum of the

variables in Theorem 2 for a given length . The optimizer of
to is given by because an increase in
increases in the constraint set and by definition

. To find the that gives the infimum of ,
let and be the infimum value that
is tight in the constraint. Since , the infimum
solution for the rest of is given by . Using
these, it is straightforward to prove (56).

For , we have the following proposition that provides a
tighter achievability bound than Theorem 2.

Proposition 5: Consider the MIMO block-fading channel (3)
with fading model (5) for , imperfect CSIR (6), data rate
growing with the logarithm of the SNR at multiplexing gain

as defined in (4) and . Let be a row
vector consisting of the nonzero eigenvalues of , with

, and . Define
the variable as . There exists a Gaussian
random code whose average error probability is upper-bounded
as

(57)

where

(58)
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and is the complement of the set

(59)

where

(60)

The function can be computed explicitly for any given
block length .

Proof: See Appendix G.

The optimizer of in (58) is given by be-
cause an increase in increases in the objective func-
tion and the constraint set. To find that gives the infimum
of in (58), let . Following
[11], for , the infimum always occurs with

. For (fixed coding
rate), the length of leads to

(61)

Using similar steps as in [11], if , then
is not tight to the and the random coding achievable SNR
exponents are given by solving the infimum of in
(58), which is strictly smaller than .

Therefore, for random codes with Gaussian constellations,
the lower bound to the SNR exponent is as long as the
block length satisfies the following constraint

for
otherwise. (62)

The achievability of the random codes constructed over dis-
crete alphabets of size for a given block length is
summarized as follows.

Theorem 3 (Achievability—Discrete Inputs): Let the block
length grow as , . Then, there
exists a random code constructed over discrete-input alphabet

of size such that the average error probability with
mismatched CSIR (6) is upper-bounded by

(63)

where is given in (64), as shown at the bottom of the
page.

Proof: See Appendix H.

The assumption of the block length to grow with the SNR
as , is to obtain a more precise char-
acterization of what can be achieved using random codes with a
discrete constellation of size . The results show the interplay
among the growth rate , the cardinality of the constellation
and the achievable SNR exponent with random coding.

Remark 3: By letting , we have that

(65)

(66)

(67)

This implies that is equal to only at the contin-
uous points of the Singleton bound. Hence, random codes based
on discrete constellations are only able to achieve at the
continuous points only for all possible , with the block length
growing as and the growth rate is very large. Herein we
have also shown analytically that the block length is required
to grow with at a certain growth rate to obtain
nonzero random coding SNR exponent. To achieve the optimal
SNR exponent at the continuous points of the Singleton bound,
the growth rate, , should approach infinity, and the channel
estimator should provide reliable estimates . This is
illustrated in Fig. 1.

Fig. 1 also explains the case of a finite-valued . If is
fixed and satisfies , then
the lower bound can never achieve the scaled Singleton
bound for any positive rate . On the other hand, if is fixed and
satisfies , then the lower
bound can achieve the scaled Singleton bound for some
values of (as indicated by the dashed line in Fig. 1); larger
implies a larger range of values of for which is equal

(64)
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Fig. 1. Random coding SNR exponent lower bound for discrete signal code-
books as a function of target rate (in bits per channel use), , ,

, , and .

to . As tends to infinity, we achieve for all except
at the discontinuity points of the Singleton bound (as shown by
the solid line in Fig. 1).

VI. DISCUSSION

This section discusses some important insights obtained from
our main results.

A. Important Remarks

The following observations can be obtained from Theorems
1, 2, 3 and Proposition 5.

1) The optimal SNR exponent for any coding scheme can be
obtained when . From Lemma 1, Proposition 4 and
Theorem 1, the converse on the SNR exponent is strong
since has the same exponential decay in SNR as

. We need both a good channel estimation and a
good code design to achieve the optimal SNR exponent.

2) The results emphasise the role of the channel estimation
error SNR exponent for determining the generalized
outage exponent. Even with noisy CSIR, we are still able
to achieve the perfect CSIR SNR exponent provided that

. If , the resulting SNR exponent scales lin-
early with and approaching zero for . Fig. 2 illus-
trates this effect in a discrete-input block-fading channel
with , , and .

3) The term appears naturally from the data-pro-
cessing inequality. It highlights the importance of having
channel estimators that can achieve error diversity .
With , the error level is likely to be much less than
the reciprocal of the SNR level as the SNR tends to infinity.
In a block-fading set-up, this result provides a more precise
characterization on the accuracy of the channel estimation
at high SNR than [31].

4) The role of the channel estimation error diversity is
governed by the channel estimation model. With a max-
imum-likelihood (ML) estimator, it can be shown that

is proportional to the pilot power [25]. Larger pilot
power implies larger . Hence, the price for obtaining
high outage diversity is in the pilot power which does not
contain any information data. The bounding condition

implies that the perfect-CSIR outage diversity
can be achieved with . Note that although having

Fig. 2. Generalized outage SNR exponent for discrete-input block-fading
channel, , (Rayleigh, Rician and Nakagami- fading),
and .

larger for shows no diversity improvement, it
still leads to a better outage performance. As tends to
infinity, the outage performance converges to that with
perfect CSIR.

5) The outage diversity in Theorem 1 is valid for the gen-
eral fading model described by (5). This fading model is
used extensively in analysing the performance of radio-fre-
quency (RF) wireless communications.

6) For a given , Gaussian random codes with finite
block length can achieve the full diversity of as
long as the block length is larger than a threshold. On
the other hand, discrete-alphabet random codes with fi-
nite block length cannot achieve the diversity given by the
Singleton bound . In order for these random codes
to achieve the Singleton bound, the block length needs to
grow as [6].

Figs. 3 and 4 illustrate the generalized outage proba-
bility in (46) for Gaussian and binary phase-shift
keying (BPSK) inputs, respectively, over a MIMO Rayleigh
block-fading channel with and . The following
parameters are specified: and
use for Gaussian input and , and
use for BPSK input. The curves were generated as follows.
Monte Carlo simulation was used to compute the number of
outage events. Firstly, each entry of and ,
were independently generated from zero-mean complex
Gaussian distributions with variance one and ,
respectively. The values of , 1, and 2 were used for
comparison with the perfect CSIR outage probability. Sec-
ondly, for a fixed , channel and channel estimate

, , were
computed for Gaussian inputs (38) and BPSK input (40). Note
that for Gaussian inputs, the generalized outage diversity may
not be derived directly from (38) particularly due to the term

. However, this term can be
evaluated numerically using the singular-value decomposition
[27] as in Appendix D. On the other hand, for BPSK input,
we compute the expectation in (40) using the Gauss-Hermite
quadratures [28]. Thirdly, for a fixed and , the supremum
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Fig. 3. Generalized outage probability for Gaussian-input MIMO Rayleigh
block-fading channel with , , and .

Fig. 4. Generalized outage probability for BPSK-input MIMO Rayleigh block-
fading channel with , , and .

over in the RHS of (36) was solved using standard convex
optimization algorithm since the function

(68)

is concave4 in for . Finally, an outage event was de-
clared whenever was less than . was given
by the ratio of the number of outage events and the number of
total transmissions. From the figures, we observe that is
equal to 4 and 3 for Gaussian and BPSK inputs, respectively.
As predicted by Theorem 1, the slope becomes steeper with in-
creasing , eventually becoming parallel to the perfect CSIR
outage curve for . For , the slope does not in-
crease as increases. However, we still observe the improve-
ment in outage gain; the curves for achieve the same

as the one for at a lower SNR.

B. Remarks on the Diversity-Multiplexing Tradeoff (DMT)
for the Gaussian Inputs

In this paper, we focus on fixed-rate transmission such that
the coding schemes have zero multiplexing gain [11]. The anal-
ysis in this paper can be extended to the nonzero multiplexing

4The concavity of in is a consequence
of being concave in for . The concavity of

can be shown using the same technique used to prove
the concavity of (Appendix B).

gain case. In this case, the data rate can be expressed
as a function of the SNR, . A nonzero multi-
plexing gain is relevant for continuous inputs such as Gaussian
inputs or discrete inputs with alphabet size increasing with the
SNR. In the following, we provide some remarks on extending
the results to the nonzero multiplexing gain for the Gaussian in-
puts.

The analysis of nonzero multiplexing gain is implicitly
covered in Theorem 2 and Proposition 5. Both results provide
a lower-bound on the optimal diversity-multiplexing tradeoff
(DMT) with infinite block length. Note that from Theorem 2,
one may obtain nonzero for general fading parameter
and for as

(69)

Note that this lower bound can be loose since the maximum mul-
tiplexing gain for a positive diversity is as compared
to for the case of perfect CSIR [11]. From Propo-
sition 5, one may obtain nonzero for fading parameter

and for as the tradeoff with the multiplexing
gain. Indeed, as shown in Appendix G, the lower-bound to the
optimal DMT curve for is given by the piece-
wise-linear function connecting the points , where

(70)

(71)

Note that we have and
. This lower bound is tight for

and , which is the perfect-CSIR DMT [11].
There are several reasons why the above bounds may not be

tight for mismatched CSIR. The first one is that we only eval-
uate the above bounds based on Gallager’s lower bound to the
error exponent (34) which for large yields an upper bound to
the generalized outage probability as shown in Appendix E and
Appendix G. Hence, these bounds are not an exact characteri-
zation of the generalized outage probability. The second one is
that for the bound in Theorem 2, the tradeoff is derived by using
the joint pdf of the entries of and . Note that this leads to
a further lower bound as shown in Appendix G. A tighter bound
is obtained by considering the analysis using the joint pdf of the
eigenvalues. However, this last approach has some technical dif-
ficulties particularly for as also shown in Appendix G.

Using the upper bound for the GMI (Appendix D), an upper
bound for the optimal DMT can be derived. This yields

(72)

Note the upper bound is trivial for any
because this is identical to the result of zero multiplexing gain;
the diversity with zero multiplexing gain is an upper bound to
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the optimal tradeoff. The upper bound (72) and the lower bound
(69) are tight only for zero multiplexing gain.

C. Extension to Optical Wireless Scintillation Distributions

In optical wireless scintillation channels, we mainly deal with
the received signal intensities (or instantaneous power signals),
and not complex input symbols or complex fading realizations;
thus the use of real amplitude modulation such as pulse-posi-
tion modulation (PPM) is common [20]–[22], [32]. This means
that the channel phase is not being considered in the detec-
tion (noncoherent detection) and therefore only the real-part
of the complex Gaussian noise affects the decision. However,
the mutual information and the GMI expressions in (13) and
(36) are valid for real-valued signals and real-valued fading re-
sponses as well (see also [20], [32] for the compact expression
of single-input single-output (SISO) mutual information with
PPM inputs). Notice that in our converse and achievability re-
sults, we have used the joint probability of and . The pa-
rameter that distinguishes the resulting SNR exponents for dif-
ferent fading conditions is the channel parameter in the form
of . This form comes out naturally from the pdf after

defining . Thus, as long as after performing
the change of random variables, we can express the pdf of the
normalized fading gain for each channel matrix entry as

(73)

then our main results are valid for those fading distributions
as well. Consequently, the results are valid for fading distribu-
tions used in optical wireless scintillation channels such as log-
normal-Rice distribution for which and gamma-
gamma distribution for which , where

, are the parameters of the individual gamma distributions
[20]–[22].

VII. CONCLUSION

We have examined the outage behavior of nearest neighbor
decoding in MIMO block-fading channels with imperfect CSIR.
In particular, we have proved the achievability of the general-
ized outage probability using error exponents for mismatched
decoding. Due to the data-processing inequality for error expo-
nents and mismatched decoders, the generalized outage proba-
bility is larger than the outage probability of the perfect CSIR
case. Using the GMI converse, we have shown the general-
ized outage probability as the fundamental limit for i.i.d. code-
books. We have further analyzed the generalized outage prob-
ability in the high-SNR regime for nearest neighbor decoding
and we have derived the SNR exponents for both Gaussian and
discrete inputs. We have shown that in both cases, the SNR
exponent is given by the perfect CSIR SNR exponent scaled
by the minimum of the channel estimation error diversity and
one. Therefore, in order to achieve the highest possible SNR
exponent, the channel estimator scheme should be designed in
such a way so as to make the estimation error diversity equal
to or larger than one. Furthermore, the optimal SNR exponent
for Gaussian inputs can be achieved using Gaussian random
codes with finite block length as long as the block length is

greater than a threshold; this threshold depends on the fading
distribution and the number of antennas. On the other hand, for
discrete-constellation random codes, these SNR exponents are
achievable using block length that grows very fast with .
The results obtained are well applicable for a general fading
model subsuming Rayleigh, Rician, Nakagami- , Nakagami-
and Weibull distributions, as well as optical wireless channels
with lognormal-Rice and gamma-gamma scintillation.

APPENDIX A
PROOF OF DISCRETE INPUT PERFECT CSIR SNR EXPONENT

Recall the fading model in (5). We can bound the pdf as 5

(74)

(75)

Let and where . The lower
bound for the joint pdf of and is given as

(76)

Remark that for , we can see from the exponential term
that the above lower bound decays exponentially with the SNR
to zero; for , the exponential term converges to a constant
as tends to infinity. As for the joint pdf upper bound, every-
thing remains unchanged except for the exponential term. We
can write the upper bound for the exponential term as follows:

(77)

If , then the above term decays exponentially to zero as
tends to infinity. On the other hand, if , then the above

term converges to a constant as tends to infinity. We there-
fore have that both upper and lower bounds behave similarly
for high . Let be the asymptotic outage set for the dis-
crete constellation . This set has been characterized in [30] for
perfect CSIR. We then have the outage probability for
MIMO channels with fading blocks

(78)

(79)

Applying Varadhan’s lemma [33] yields the following result:

(80)

which is exactly the Rayleigh fading result [30] multiplied by
.

5Note that for any real nonnegative numbers and satisfying , it
follows that for any . Then, we have the triangle inequality

. Applying the reverse triangle inequality we also
have .
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APPENDIX B
SECTION IV PROOFS

1) Concavity of : Fix the input distribution
. We first define , ,

,

(81)
and

(82)
Then, we have that

(83)

Using Hölder’s inequality [34], we have that

(84)

Taking the logarithm, which is a monotonously increasing func-
tion, on both sides yields

(85)
which shows the concavity of the function in
for .

Now, let . Then

(86)

(87)

(88)

where the inequality is due to Hölder’s inequality [34]. Evalu-
ating the generalized Gallager function (82), we have that

(89)

(90)

Taking logarithm on both sides gives us

(91)
which proves the concavity of in for .

2) Nonnegativity of : Let be the optimizing
value of on the RHS of (36). Then, by substituting a specific
value of to the RHS of (36), i.e., , we have that

(92)

(93)

(94)

due to the fact that always maximizes the RHS of (36). Let
. Note that from (37) and (94)

(95)

(96)

Since the function in (8) can be bounded as

for , we have that

(97)

and

(98)

It follows from (96) that

(99)

(100)

where the inequality (99) is obtained from applying Fatou’s
lemma [37], and the equality (100) is obtained from applying
the dominated convergence theorem [35]. This proves Proposi-
tion 2. This property serves as a weak lower bound for .
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3) GMI Upper Bound: We have that

(101)

The left-hand side (LHS) supremum over is taken over all
blocks. Thus, the optimizing does not necessarily maxi-

mize the value of for each block . In this
simple upper bound, however, the supremum is taken for each
individual block giving a larger quantity in total. In general,

is equal to the upper bound when for all
, where is the optimizing for the RHS of

(101) and is the optimizing for the LHS of (101).

APPENDIX C
PROOF OF DISCRETE INPUT MISMATCHED

CSIR SNR EXPONENT

We first state the following lemma. This lemma is general for
both i.i.d. Gaussian and discrete inputs.

Lemma 3: Consider the MIMO block-fading channel (3)
with mismatched CSIR (6) for the general fading model in (5)
and the high-SNR generalized outage set denoted by ex-
pressed in terms of the normalized fading gain matrix , fading
phase matrix , normalized error power matrix and error
phase matrix . Then, the generalized outage probability sat-
isfies

(102)

(103)

(104)

For the fading model in (5), the generalized outage diversity is
given by the solution of the following infimum:

(105)

Proof: The joint probability of , , and over the
outage region can be written as in (103) because the random
matrices and are independent. Note that since each entry
of estimation error phase matrix is uniformly distributed over

, the density does not affect the exponential
equality. Then, this lemma is obtained by evaluating the integral
(103) over and applying Varadhan’s lemma [33]. The condi-
tion is the same as that for perfect CSIR in Appendix A.

On the other hand, the condition is derived as fol-
lows. Consider the entry of at block , receive antenna and
transmit antenna . The pdf of is given by

(106)

From the above pdf, we can see that the interval of for which
the pdf does not decay exponentially with the SNR to zero is
given by . The result follows by considering all entries
of .

We start the proof of the discrete-input SNR exponent with
the proof for single-input single-output (SISO) channels. The
proof is based on both upper and lower bounds on the GMI. The
MIMO proof follows as a simple extension of the SISO proof.

1) SISO Case:
GMI Lower Bound: For the SISO channel, (40) becomes

(107)

and the GMI is given by

(108)

For a given , the sum of over all
yields

(109)

For any noise realization with , we can bound
the term inside the expectation as

(110)

(111)

(112)

We have the expectation over

(113)
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Note that the discrete constellation size and the energy ,
are assumed to be finite and independent of the SNR.

Thus, to make sure that the RHS of (113) is finite, i.e.,

(114)

we can pick in the set , which is defined as

(115)

Hence, for any , we can apply the dominated convergence
theorem [35], for which

(116)

Replacing the supremum over in (108) with the
supremum over results in the lower bound to the GMI
due to the suboptimal . This suboptimality occurs because the
optimizing that minimizes the expectation (109) can only be
obtained from the set , not from the interval .

Substituting a specific value of in the interval

further lower-bounds the GMI. As we

will show later, the following choice of :

(117)

can give a tight GMI lower bound at high SNR by selecting an
appropriate value of . At high SNR, the choice of allows
for and for .

Using the transformation of variables and

, the exponential term in (107) with be-
comes

(118)

where and are the angles of and , respectively.
We have the following cases on the exponential convergence of
(118) for all blocks as the SNR tends to infinity.

1) Case 1: for all (for any ). Note that
under this condition, the perfect-CSIR mutual information

goes to zero as the SNR tends to infinity [6]. Due
to the data-processing inequality (Proposition 4) and the

nonnegativity property (Proposition 2), also tends
to zero as the SNR tends to infinity.

2) Case 2: and for all . From
(118), we have the following dot equality for

(119)

The suboptimal is given by

(120)

where . By exchanging the limit
and the expectation as in (116), we can show that (118)
tends to zero as the SNR tends to infinity if and only if

and . Otherwise, we can upper-
bound (118) by one. This yields a further lower bound for
the GMI. A tight lower bound is obtained by letting .

3) Case 3: and for all . Then,
the terms with and in (118)
dominate, and we have the following dot equality

(121)

for and

(122)

for , , where ,
, and where and are the angles of and

, respectively. Note that using

(123)

with a strictly positive , both (121) and (122) always tend
to zero as the SNR tends to infinity as a result of ex-
changing the limit and the expectation in (116). This makes
(118) tend to one, and is lower-bounded by zero.

4) Case 4: Without loss of generality, we group and as
follows
• and , for ;
• and , for ;
• and , for ;
• and , for .
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Note that we select that satisfies the exponential
equality

(124)

where is chosen such that

(125)

and where

(126)

Then, the convergence of (118) can be explained as fol-
lows.
• For , we have that and

. Under this condition and after exchanging the limit
and the expectation in (116), (118) tends to one for any

. It implies that ,
for any .

• For , we have that
and . The dominating term in the expo-
nent of (118) is given by . Thus, for

and , exchanging the
limit and the expectation in (116) yields the conver-
gence of (118) to zero as the SNR tends to infinity. We
then have that . On the other
hand, for and , as the
SNR tends to infinity, we observe the convergence of
(118) to one as the SNR tends to infinity. This implies
that .

• For and , we have the dot
equality

(127)

for and

(128)

for , , where is the angle of . In this
case, we cannot use the dominated convergence theorem
[35] in (116) since there is a dependency on . Instead,
since the logarithm is a concave function of its argument,

we first apply Jensen’s inequality [36, Theorem 2.6.2] to
the expectation in (107)

(129)

(130)

For a given , , we have the bounds

(131)

(132)

Averaging over yields

(133)

where we have assumed so that the the above ex-
pectation can be evaluated. Furthermore, using in
(117), the RHS of the above equation can be guaranteed
to be finite. Thus, with , we can apply the domi-
nated convergence theorem [35] as

(134)

For , using the relationship in (134) and in
(125), we observe that (127) tends to zero as the SNR
tends to infinity and (118) tends to one. To evaluate
(128), we first upper-bound

(135)
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Let . Note that has the Rayleigh pdf

(136)

Using the result in (130) and the upper bound in (135)
for , we have that the expectation over as

(137)

(138)

(139)

(140)

where is the error function [28]. The last in-
equality is due to the upper bound . Note that
for , we have

(141)

(142)

(143)

As is always less than , the last dot equality
implies that as the SNR tends to infinity, the upper bound
in (140) tends to one. This provides an upper bound to
the expectation over in (130) at high SNR when

, and . Complementing the result with
the one for , and , we have that

when .
On the other hand, for and ,
we have that as the SNR tends to infinity, (118) tends to
one for any . It implies that

for any .
• For , we always have . It

follows that for , we have the dot equality as
in (121). On the other hand, for , , the
dot equality follows from (122). Then, using in (125)
and exchanging the limit and the expectation in (116),
we observe that for both and , (118)
tends to one as the SNR tends to infinity. Thus, we have
that for all .

From to , the generalized outage probability can
be upper-bounded as follows:

(144)

(145)

(146)

where we have defined

(147)

for any , . Applying the result in Lemma 3, we have that

(148)

Following the steps used in [6], we can show that the values
of and achieving the infimum are given by

(149)

(150)

(151)

where is the unique integer satisfying
. As this is valid for any and ,

the lower bound for is tight if we let , . This yields

(152)

where is the Singleton bound [6]

(153)

GMI Upper Bound: For a given , , we define

(154)

and for a given , we define

(155)
Then, the GMI can be upper-bounded as (Proposition 3)

(156)

where

(157)

(158)
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The configuration of the signal points in the constellation
plays an important role in the evaluation of the GMI upper

bound. In particular, this relates to the energy level for each
signal point . Suppose that for a given constellation , we
have energy levels. Denote , , as the subset
of corresponding to the -th energy level. Then, we can par-
tition into disjoint subsets , such that

(159)

Note that for each , all signal points in
have the same energy.

The above partition represents all possible configurations of
with respect to the energy levels. For instance, with fully-non-

equal-energy constellations, we have , .
On the other hand, with fully-equal-energy constellations, we
have and .

The following asymptotic high-SNR analysis is based on
the upper-bounding techniques from Proposition 3 and Fatou’s
lemma [37]. To this end, we use the change of variables from

and to and so that we can write

(160)

Similarly to the lower bound analysis, we expand the exponen-
tial term and consider the following cases.

1) Case 1: Regardless of the value of , the
supremum of over in (156)
tends to zero as it is upper-bounded by the perfect-CSIR
mutual information for block [6].

2) Case 2: and . The supremum in the RHS
of (156) is equivalent to the following infimum

(161)

which can be lower-bounded as

(162)

by exchanging the infimum over and the expectation
twice. Let be the value of that gives the infimum in the
RHS of (162). The choice of depends on the behavior of
the following term

(163)

It follows that if

(164)

the solution of is given by . Otherwise, the solu-
tion of is given by . Note that since at high SNR
we have the exponential equality for

(165)

for and , it follows that in this case .
Since , we can apply Fatou’s
lemma [37] to the RHS of (162) as follows

(166)

This gives a further lower bound to the RHS of (162) at
high SNR and yields an upper bound to .
Using (165) and the limit in (166), we can show that (160)
tends to zero for as the SNR tends to infinity, and
(160) is equal to one for . Thus, the supremum of

over in (156) is upper-bounded
by for and .

3) Case 3: and . The supremum in (156) is
equivalent to the following infimum:

(167)

which can be lower-bounded as

(168)

by exchanging the infimum over and the expectation.
Let be the value of that gives the infimum in the RHS
of (168). Note that this is different to the one in case
2. The dominating terms in the exponent of (160) can be
shown to have the following exponential equality

(169)

for . On the other hand, for , ,
we have that

(170)
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with probability one since the constellation is discrete
and both and are uniformly distributed over .
Hence, for a given and , we have that at high
SNR

(171)

for , and

(172)

for . It follows that

(173)
Using the second order derivative of the log-sum-exp func-
tion above, it can be shown that the
function

(174)

is convex in for . To check whether the extreme
point, which gives the global minimum to (174), exists for

, we can simply find the derivative of (174) at
as shown in (175) and (176), at the bottom of the page.
Consider a pair of signal points having the same
energy, i.e., , , , for ,
where is the number of energy levels in as stated in
(159). The contribution of the pair in the summa-
tions in (176) is given by

(177)

(178)

(179)

(180)

(181)

where we have used the equality by
definition of , the equality in energy

, and the trigonometry identities

(182)

and . Define

(183)

Using the result in (181), we can re-write the summations
in (176) as

(184)

where we have incorporated all disjoint subsets
as given in (159) that satisfy .

We have from the last equation that the condition
is always true. Then, if , then

the derivative in (176) is always nonnegative, which im-
plies that the solution of that leads to the infimum in the
RHS of (168) is given by . By using and ap-
plying Fatou’s lemma [37] to the RHS of (168)

(185)

(175)

(176)
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we have that the upper bound for the supremum of
over in (156) tends to zero as

the SNR tends to infinity.
On the other hand, if , then the derivative
in (176) is always nonpositive. Thus, there is a possibility
that there exists a positive number in the interval

that leads to the infimum in the RHS of (168). This
also implies that the upper bound for the supremum of

over in (156) is in the interval
. Herein we can derive a loose upper bound as fol-

lows. We first define the event as

(186)

where we have explicitly written . A
loose upper bound is then obtained by considering that
when occurs, the upper bound for the supremum of

over in (156) is given by .
This loose bound is sufficient to show that the upper bound
for the SNR exponent is tight with the lower bound.

From cases 1 to 3, we can show that the generalized outage
probability is lower-bounded as follows:

(187)

(188)

(189)

where we have defined

(190)

for , , and

(191)
From Lemma 3 and the set , we have that

(192)

Similarly to the GMI lower bound, it is not difficult to show
that the values of , achieving the infimum are
given by . To find the values of , that solve
for the infimum, we need to see whether it is possible to find
the values of and that do not belong to . Note that the
following condition:

(193)

implies that . Thus, from (186) and (193),
we can always find and that do not belong to . It then
follows from [6] that the values of , achieving
the infimum are given by

(194)

(195)

where is the unique integer satisfying
.

Substituting the values of and , that
achieve the infimum in the RHS of (192), we obtain the upper
bound for the SNR exponent

(196)

where we have let , to make the upper bound tight.
2) MIMO Case: Recall the function in (40)

(197)

where the expectation is over . It follows that the GMI is
given by

(198)

Mimicking the analysis done for the SISO case, we have the
GMI lower and upper bounds as follows.

GMI Lower Bound: Using the suboptimal to apply
the dominated convergence theorem [35], we have that

(199)

where now in (117) changes to , and where
and are the angles of and , respectively. Simi-
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larly to what it is done in [30], define the following sets ,

, and for , as

(200)

(201)

(202)

where now . Note
that satisfies

(203)

where is chosen such that

(204)

and where

(205)

For and , if there exists satisfying
the constraint set , then with , the exponential func-
tion inside the expectation in the RHS of (197) tends to zero as
the SNR tends to infinity. Otherwise, the exponential function
converges to one (as the lower bound implies). Therefore, we
can write the following exponential equality for high SNR

(206)

Let be the value of that solves the supremum in the
RHS of (198). Due to the use of suboptimal , in (206), we
have the upper bound for the expectation over at high SNR as
follows

(207)

(208)

for all . Thus

(209)

and is upper-bounded as

(210)

Define

(211)

It follows that applying the result in Lemma 3 yields the lower
bound for the SNR exponent:

(212)

We can observe from (200) that the solution of for all
, and to the above infimum

is given by . Following [30], it can be proved that the solution
of the above infimum is given as

(213)
GMI Upper Bound: Similarly to the SISO analysis, the

GMI upper bound is evaluated using Proposition 3 and Fatou’s
lemma [37]. The only difference with the GMI lower bound is
in the definition of the sets

(214)

(215)

(216)
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where

(217)
Following the same steps used in the SISO analysis, we can
lower-bound the expectation over as follows:

(218)

(219)

The generalized outage probability can be lower-bounded as

(220)

Define

(221)

Using to apply the result in Lemma 3 and following the
technique used for the GMI lower bound, the SNR exponent
can be proved to be upper-bounded as

(222)
This is because the infimum solution for in (214) is same as
the solution for in (200) (given by ), and because we can
always find and that do not belong to . This
completes the converse part of the main theorem for discrete
inputs.

APPENDIX D
PROOF OF GAUSSIAN INPUT MISMATCHED

CSIR SNR EXPONENT

For i.i.d. Gaussian inputs, (38) can be written as (in natural
base log)

(223)

where

(224)

Herein we derive the lower and upper bounds to the above ex-
pression to prove the converse part for the Gaussian inputs.

1) GMI Lower Bound: It is not difficult to see that
is nonnegative. Then, we

have that

(225)

Without loss of generality, assume that 6. Let ,

be the -th eigenvalue of . Then, the RHS of
(225) can be converted into eigenvalues expression

(226)

Note that we can loosen the bound by considering the following
technique:

(227)

(228)

(229)

(230)

(231)

where the last two equations are due to the fact that is
a positive semidefinite matrix, where the singular values are al-
ways zero or positive. Hence, it holds that [27]

(232)

We then have a compact representation of the lower bound to
the GMI as

(233)

(234)

6If , then it suffices to replace with

.
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The high-SNR optimizing is difficult to evaluate in a closed
form due to the sum for all blocks involving the logarithm
function. The suboptimal can be obtained using the following
argument. For any , we can lower-bound

(235)

We continue the evaluation by performing the first-order
derivative to the RHS of (235) with respect to and equating it
to zero. From this step, we obtain a suboptimal with respect
to (234) and this suboptimal is given as

(236)

Substituting this into (234) gives

(237)

Note that from , we have the following
relationship

(238)
Let , and

. Then, for any real positive number , we have
that for

(239)

On the other hand, for , we have the following
four cases.

• If and , we have that

(240)

(241)

(242)

• If and , where denotes
the complex conjugate of , we have that

(243)

(244)

(245)

• If and , where denotes
the complex conjugate of , we have that

(246)

(247)

(248)

• If , we have that

(249)

Note that the condition for also covers
the condition for , the condition for

with , and the condition for
with .

Using the preceding relationships, we have that

(250)

(251)

(252)

where

(253)

(254)

(255)

Define , and as

(256)

(257)

(258)

We have the following cases.
1) Case 1: . This refers to the case

where the indexes for which the minimum occurs are
different for and . Clearly, we have that

(259)

It follows that

(260)

(261)

(262)

2) Case 2: . This refers to the case
where the indexes for which the minimum occurs are
the same for both and .
• Case 2.1: . We have that

(263)
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It follows that

(264)

• Case 2.2: . We have that

(265)

If we have , the high-SNR exponential equality
can be evaluated as follows:

(266)

(267)

where the last dot equality follows from the condition
. For , we have that

(268)

(269)

where the last dot equality is due to .
• Case 2.3: . From (242), (245) and (248),

if , or ,
or , ,

then we observe the same convergence results as in case
2.2. Otherwise, we have from (249) that
and hence

(270)

Note that the results in cases 2.2 and 2.3 are identical.
Summarizing from the above two cases, we have that

(271)

Let the data rate satisfying the exponential equality
, where is the multiplexing gain [11] ( tends

to zero for fixed rate transmission). Then, from (237) and (271),
we can bound as follows:

(272)

(273)

(274)

(275)

where we have defined

(276)

Applying the result in Lemma 3, it is not difficult to show that

(277)

Since increasing increases both the infimum function and
the LHS of the constraint, the optimum is given by

. Since , the infimum solution is given by
for all , and . On the

other hand, the infimum solution of is given by the intersec-
tion of the region defined by
and the region defined by . Due to
the fact that , for all and

, the solution to the above infimum is given by

(278)

for and zero otherwise. For a fixed coding
rate , we have that

(279)

2) GMI Upper Bound: The expectation
can be evaluated as

follows:

(280)

(281)

(282)

(283)

where

(284)

is a positive semi-definite matrix. Let , where is a
unitary matrix diagonalising . Then, is a Gaussian random
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vector with zero mean and covariance matrix given by the diag-
onal matrix . We have that 7

(285)

where is the -th eigenvalue of , and is a diagonal
matrix with diagonal elements given by ,

. Since is a Hermitian matrix, we can apply the
eigen-decomposition [27] such that

(286)

where is another unitary matrix and is another diagonal ma-
trix obtained by diagonalising . Let be the -th eigen-

value of , then the diagonal entries of are given by
for all . Applying this to ,

we have that

(287)

(288)

where is also a unitary matrix and is a Hermitian
matrix. Then, we have that

(289)

7Without loss of generality, herein we assume .

(290)

Let , , , be the entry of the
matrix at row and column . Then, the integral in (290)
can evaluated as in (291)–(294), as shown at the bottom of the
page. Herein, and denote the complex conjugates of
and , respectively, and denotes the real part of a com-
plex number. We have that from (291)

(295)

where the inequality is because is nonnegative; the last
equality is because is an element of a unitary matrix and
the sum of over is equal to one. Finally, we
have that

(296)

Let be the optimizing that gives the supremum in the
RHS of (36) for Gaussian inputs. We then apply Proposition 3.

...
. . .

... ...
...

. . .
...

...
. . .

...
...

(291)

(292)

(293)

(294)
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Since , and are all nonnegative, using (295) we have
the upper bound to as

(297)

(298)

(299)

where the last inequality is due to the fact that
, thus each is upper-bounded by . If

is greater than or equal to , then the
supremum in the RHS of (299) is achieved with
because the RHS of the last inequality is a strictly increasing
function of . However, using the data-processing inequality
(Proposition 4), we can always bound
with the perfect-CSIR bound

(300)

(301)

On the other hand, if is less than , the
supremum is achieved with given by

(302)
The above is obtained from the solution of the first order
derivative of

(303)
with respect to when the derivative is equal to zero. The in-
terval yields the max function in the RHS of (302).

We continue the analysis by using the change of random
variables as used in the GMI lower bound. The condition

for the perfect-CSIR bound implies
that at high SNR, we have the following exponential inequality

(304)

We then have the following asymptotic upper bound character-
izations.

1) Case 1: . From the perfect-CSIR bound
(301), we have that

(305)

2) Case 2: . If is greater than or

equal to , we have . From the
RHS of (299), this yields

(306)

Otherwise, we have

(307)

and this also yields

(308)

Let the data rate satisfying the exponential equality
, where is the multiplexing gain [11] as used in

the GMI lower bound. From the above cases, we have the bound
for as follows:

(309)

(310)

(311)

where we have defined

(312)

Thus, using the result in Lemma 3 to find the SNR exponent and
following the same steps used for the GMI lower bound, it is not
difficult to prove that

(313)

For fixed rate transmission , we obtain

(314)

This proves part of Theorem 1 on the converse for Gaussian
inputs.



ASYHARI AND GUILLÉN I FÀBREGAS: NEAREST NEIGHBOR DECODING IN MIMO BLOCK-FADING CHANNELS 1509

APPENDIX E
GAUSSIAN INPUTS ACHIEVABILITY PROOF

Recall that from (35), the generalized Gallager function for
MIMO channels can be written as (in natural-base log)

(315)

Evaluating the inner expectation over for a given ,
, and , we have that

(316)

where

(317)

Then, the expectation over is given as

(318)

We can evaluate the expectation operation as follows. For an
arbitrary function , the expectation over is given
by

(319)

We first apply the integration over

(320)

Using , we have that

(321)

where is a unitary matrix similar to the one defined in
Appendix D, and where we have assumed without loss
of generality. Note that

(322)

(323)

because multiplication with the unitary matrix does not affect
the Euclidean norm of a vector. Therefore, we have that

(324)

(325)

(326)
where the inequality in (325) is proved in Appendix F. Note that
the result in (325) requires and

(327)

–where and are some positive constants- so that the inte-
gral can be evaluated (see Appendix F). Following this, we have
that

(328)

and from (315)

(329)
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Note that the random coding error exponent is given by

(330)

The lower bound for is obtained by replacing
above with the RHS of (329) and given in (331),

as shown at the bottom of the page. Note that from (331), we
require and for all
so that the logarithm functions are defined. Note that the fol-
lowing choices of and

(332)

ensure that the logarithm functions in (331) are always defined.
Since and are always bounded by some
real-valued constants in the interval , we have that for

(333)

where .
Note that choosing specific values of and further lower-

bounds (331). We continue the analysis by following the same
technique used in Appendix D. Since can also be
lower-bounded by 0 (i.e., ), we have that by substituting

and to and , the lower bounds in (334) and (335), as
shown at the bottom of the page. Note that the inequality in
(335) is due to the lower-bounding technique in (230). Define

as the RHS of (335). Following the high-SNR anal-
ysis in the GMI lower bound (cases 1 and 2), we obtain the dot
equality

(336)

Recall the rate and multiplexing gain relationship
as in (4). It follows from in the RHS of (335), (336)
and the dot equality that for high SNR, if the
following event:

(337)

occurs, then and if the complementary event

(338)

occurs, then . Therefore, the upper bound to
the average error probability (for Gaussian random codes that
satisfy the generalized Gallager bound) is given as

(339)

(340)

(341)

(342)

(331)

(334)

(335)
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where , , and where

(343)

is the lower bound to the generalized outage SNR expo-
nent achieved with infinite block length (notice that in
Appendix D is similar to except for the inequality which
becomes in ) and

(344)

Since we need

(345)

in the set for , it is straightforward to deduce that
. This follows from [11, Lemma 6]. Therefore,

the SNR exponent lower bound for a given block length is
given by in Theorem 2.

APPENDIX F
PROOF OF INEQUALITY (325)

Basically, we want to evaluate the following expression:

(346)

where the above expectation is over . To simplify the process,
we let and , , .
Then, expanding the argument in the exponential term for a
given , we have that

(347)

Since is independent for , we can integrate for
one value of and generalize the result. By basic integration, we
can easily obtain that

(348)

Evaluating the integral for all , yields

(349)

Note that

(350)

(351)

because is a unitary matrix that does not change the Euclidean
norm of a vector. This removes the difficulty of obtaining the
exact expression for . On the other hand, the last term is dif-
ficult to evaluate as the summation involves the variable .
Herein we have to impose an additional condition such that the
last term in (349) can be evaluated. Suppose that we restrict

with strict inequality for and . Then,
we have the bound for and

(352)

Hence, we can upper-bound the last term in (349) as follows:

(353)

(354)

(355)

where the last equality is due to the unitary matrix that does
not affect the Euclidean norm of a vector. This removes the de-
pendency on . From the exponential term in (349) and by
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combining (350) and (351) and (355), we have the following
upper bound to the expectation over :

(356)

(357)

(358)

(359)

where the last inequality is due to .
Note that the above function is integrable if
and as the SNR increases, there exist positive constants and

for which guarantees that the function is

integrable. Thus, the choice of in (236) needs to modified such
that this condition is satisfied. However, since we just need to
modify the constants, i.e., and , which are SNR indepen-
dent, it does not affect the exponential equality in the high-SNR
regime.

APPENDIX G
TIGHTER ACHIEVABILITY BOUND FOR GAUSSIAN INPUTS

From (334) and (335) (Appendix E) with , we can
rewrite the lower bound for the mismatched decoding error ex-
ponent as follows:

(360)

(361)

where and

(362)

We have used the last inequality above to derive the block length
threshold for Gaussian input as shown in Theorem 2. The main
benefit of using this is that the results are general for the fading

model in (5) since we can easily evaluate the mismatched de-
coding error exponent in terms of and . However, using
the last inequality implies looser achievability bound and the
resulting block length threshold may not be tight.

A tighter bound is obtained by using the inequality (360).
This requires the joint density function of and the entries of

. Note that for a given , has the same distribution and
covariance as but with the mean shifted by . Conditioned on

, the mean of is given by . From (5), the conditional
distribution of each channel estimation entry, , is given by

(363)

The characterization of the above pdf is difficult when .
This can be explained as follows. As the SNR tends to infinity,
the near zero behavior determines the dominating term in the pdf
[11], [23]. Note that for , the near zero behavior of the pdf
is determined by the values of , in . This behavior does
not only depend on but also and the angles of and .
These interplaying variables make the high-SNR behavior of the
pdf intractable. On the other hand, when , the variable
only affects the exponential term, which for many cases tends
to decay exponentially or converges to a constant for high SNR
(see also [23], [24]).

Consider and assume , we perform a change
of random variables from the matrix entries in to its eigen-
values for all . Since the entries of the channel
matrix are assumed to be i.i.d., the pdf of for a given is
given by

(364)

Using the singular value decomposition of and the
eigenvalue decomposition in the form of [27],
random matrices results [38], [39] provide the joint distribution
of the ordered eigenvalues in the following form [23], [24]:

(365)

where is the normalizing constant and and
are the complex Stiefel manifolds [38], [39]. The definition of
complex Stiefel manifold is as follows. Suppose that is an

matrix with orthonormal columns so that
. The set of all such matrices is called the Stiefel manifold,

defined by [38], [39]

(366)

Note that with
and .
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Let . Using this change of variable, (364) and
(365), we can write the above pdf for as done in [24]

(367)

where is an matrix with all elements equal to
and is the -norm 8. As we deal with the achievability
bound, it is sufficient to find a tight upper bound for the pdf.
Note that since is a finite-dimensional complex space,
all norms on are equivalent9 [40]. Thus, we can find a
real positive number such that the term in the exponent
can be lower-bounded as

(368)

Applying the backward triangle inequality for the matrix norm,
we have that

(369)

(370)

(371)

Since by definition in (5), we can lower-bound (367)
using

(372)

(373)

This follows from the monotonicity of the function
over the interval . Remark that the conditional pdf in (365)
is conditioned on . We can write the joint density function of

, as follows
(374)

8The -norm of elements matrix/vector with is defined as
[27]. This complies with the constraint on in (5). For

, the norm is called Frobenius norm for a matrix or Euclidean norm for a
vector. For a matrix, this -norm denotes the entry-wise norm, i.e., treating the
matrix as a vector. We denote the Frobenius norm for a matrix and Euclidean
norm for a vector as instead of because is normally used to
denote the induced matrix-norms [27], which are different from the entry-wise
norms.

9The equivalence of norms can be explained as follows. Given a finite-di-
mensional space and a matrix , there exists positive real
numbers and independent of such that
[40].

The density can be further expanded as

(375)

where denotes the collection of for all
and . The equality in (375)

holds since the matrix can be completely expressed in terms
of its entries , , . Note that
the entries of the random matrix are i.i.d. random variables
and for each entry, the phase of , , is independent
from its magnitude and uniformly distributed over

. Hence, applying the transformation of the variables
and to and ,

we have the joint pdf of , and , ,
as follows:

(376)

We continue the analysis from (375) and (376). Note that the
term in (376) can be
further upper-bounded using (373). We then group the exponen-
tial terms as follows:

(377)

As the SNR increases, the behavior is dominated by the
smallest values of , and , ,

. Since the eigenvalues are ordered
in a nondecreasing order, the dominating terms are indicated
by and . We have the following observations.

1) For the terms in the modulus , if and
, those terms are converging to some constant
as the SNR increases and the convergence of

the exponential term is determined by

(378)

If , then dominates and this
makes the overall pdf upper bound decay exponentially to
zero as the SNR increases. If , then the con-
stant dominates and eventually the exponential
function converges to an SNR independent constant which
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can be neglected in the pdf upper bound for the asymptotic
analysis.

2) If either or , then the exponential
convergence can be explained in the following cases.
• If , then the following dominates the ex-

ponent

(379)

(380)

Since , it can be seen that the exponential func-
tion always makes the pdf upper bound decay exponen-
tially to zero as the SNR increases.

• If , with probability one, the dominating
exponent for high SNR is given by

(381)

(382)

Since is less than zero, it can be seen that the
exponential function always makes the pdf upper bound
decay exponentially to zero as the SNR increases.

3) Note that we have and for any
, , .

Hence, from the above observations, we require that and
, so that the pdf upper bound does

not decay exponentially to zero as the SNR tends to infinity.
We continue the analysis by evaluating the lower bound for

in (360)

(383)

(384)

where

(385)

(386)

and where we have defined as the RHS of (384).
Using the change of variables from and to

and , we can show the following high-SNR exponential
equality

(387)

where

(388)

It follows from in the RHS of (384), (387) and the
rate and multiplexing gain relationship that for
high SNR, if the following event:

(389)

occurs, then and otherwise if

(390)

occurs, then . Therefore, for the fading model
with , the upper bound to the average error probability is
given as

(391)

(392)

(393)

(394)

where , , and is the generalized outage SNR
exponent achieved with infinite block length. Note that to find
the solution of , we follow the same approach of finding
the optimal DMT in [11]. The lower-bound to the optimal DMT
curve is given by the piecewise-linear function connecting
the points , where

(395)

(396)
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Note that we have and
. On the other hand, is given as

(397)

Since we need

(398)

for , it is straightforward to deduce that .
This follows from [11, Lemma 6]. Thus, leads to
in the proposition. Note that we just need to replace

with in the analysis if .

APPENDIX H
DISCRETE INPUTS ACHIEVABILITY PROOF

We use the generalized Gallager upper bound to derive the
achievability by isolating the channel block length and the
random coding exponent. Recall in (35) written
in different form here

(399)

For a given , , , and , inserting the
decoding metric (8) and evaluating the expectation over , we
have that

(400)

Substituting (400) to the RHS of (399), we obtain

(401)

Note that

(402)

(403)

We have the expectation over

(404)

(405)

where we have assumed so that the expectation can be
evaluated, and where we have used the Frobenius norm property

in the last inequality. Since the signal
energy , is finite, the condition

(406)

can be satisfied by choosing the optimal solution of over

(407)

The choice of leads to a lower bound to the mismatched
decoding error exponent in (34). The term with
is needed since we have blocks. As (406) can be satisfied
with , the dominated convergence theorem [35] can be
applied here. Using the same argument as in the converse anal-
ysis, we can apply the point-wise limit in the expectation. Let

be the solution of that solves the supremum in the RHS of
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(34). Then, using a similar argument to the one used in the gen-
eralized outage evaluation (Appendix C), we can conclude the
following expectation over

(408)

(409)
where and have the same definition as in the converse
analysis (Appendix C). Consequently, we have at high SNR

(410)

and the random coding error exponent can be
bounded as follows:

(411)

(412)

Define and two mutually exclusive sets as follows:

(413)

(414)

(415)

Note that that solves the supremum in the RHS of (412) is
given by if and if . Then, we
can evaluate the upper bound to the average error probability as
follows:

(416)

(417)

(418)

(419)
where , . It is easy to see that

(420)

is equivalent to the scaled Singleton bound [6] up to the disconti-
nuity points. This is exactly the same as (213) when replacing

in the outage set with . On the other hand, following the same
steps as in the converse analysis, we arrive to the following re-
sult for :

(421)

If both and are not growing with , it is clearly
seen that as the SNR tends to infinity. Assume that is
fixed and , . Hence, we can write as

(422)

By letting , to achieve a tight SNR exponent lower bound,
the optimal solution of is given by and for
is given by evaluating the intersection of and . This
yields the following solution of

(423)

where

(424)

Note that the derivative of with respect to is given
by

(425)

It follows that the value of that solves the infimum in (423)
is given by

(426)

if , and

(427)

if .
We are interested in the interval of for which as this

is the point where the SNR exponent of discrete-input random
codes is tight with the generalized outage diversity up to the
discontinuity points of the Singleton bound [6]. Note that from
(420), (424), (426) and (427), we deduce that is only
possible with . This implies
that and . It follows that by
comparing and , we obtain the following threshold
on for which

(428)

With this , we can achieve the scaled Singleton bound diversity
up to the discontinuity points. Furthermore, using in (426)
and (427), a complete characterization of the achievable SNR
exponent with discrete-input random codes can be obtained and
it is given in (64).
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