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Abstract—We study block-fading channels where both trans-
mitter and receiver do not know the actual channel state informa-
tion (CSI) but they have access to a noisy version. We study the
interplay between estimation error variances at the transmitter
and at the receiver to give the optimal outage exponents. We
also demonstrate that achieving a reliable channel estimate at
the receiver is more important than obtaining a reliable channel
state information at the transmitter in terms of outage exponent.

I. INTRODUCTION

The block-fading channel is a widely-accepted model for
transmission of delay-limited applications over slowly-varying
fading wireless channels [1]. In such a channel, each codeword
spans only a finite number of fading blocks. The channel gain
remains constant in a block but varies from block to block.

Common assumptions to study the performance of block-
fading channels are perfect channel state information (CSI)
at the receiver [2], [3] or at both the transmitter and receiver
[4]. Some recent works focused the study on imperfect CSI at
either side of communication ends. References [5], [6] studied
mismatched CSI at the transmitter (CSIT) whereas reference
[7] studied mismatched CSI at the receiver (CSIR). This paper
proposes a unified framework for studying mismatched CSI
at both communication ends. This is a realistic assumption
since obtaining channel estimates for both transmitter and
receiver can be challenging due to the time-varying nature
of the channel, additive noise and the hardware complexity.

The key finding of this paper is an exact characterisation
of the outage diversity (signal-to-noise ratio (SNR) exponents)
dicsi (see Fig. 1), which in turn describes the interplay between
CSIR and CSIT estimation error parameters. Depending on
the CSIT and CSIR noises, we identify the region for which
mismatched CSIT and CSIR dominate the outage exponent.
It is shown that if CSIR is not reliable (i.e. dê ≤ 1), power
control schemes cannot improve the outage diversity. Thus,
achieving a reliable channel estimate at the receiver is more
important than at the transmitter.

Notation: W and W are random scalar and vector. w and
w denote scalar and vector. "w# ($w%) is the largest (smallest)
integer smaller (larger) than or equal to w. [w]+ ! max{0, w}.
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Fig. 1. Interplay between CSIT and CSIR estimation error variance exponents
and outage exponents with full-CSIT power allocation. The variances of CSIT
and CSIR noises are P−dẽ and P−dê , where P is the average SNR. du

csir

is the outage diversity with uniform power allocation and perfect CSIR [3].

II. SYSTEM MODEL

We consider a single-input single-output (SISO) block-
fading channel with B fading blocks per codeword. The output
of the channel at block b is a T−dimensional random vector

Yb =
√
pbHbxb +Zb, b = 1, . . . , B (1)

where Zb ∈ !T is the additive white Gaussian noise (AWGN)
vector; xb ∈ X T is the transmitted vector; T , X ⊆ ! and pb
denote the channel block length, the signal constellation and
the power allocated for block b, respectively. We assume that
the entries of Zb are independent and identically distributed
(i.i.d.) circularly symmetric complex Gaussian random vari-
ables with zero mean and unit variance. The fading coeffi-
cients, Hb ∈ !, ∀ b = 1, . . . , B, are assumed to be blockwise
i.i.d. according to a circularly symmetric complex Gaussian
distribution with zero mean and unit variance. We denote the
fading random vector as H ! [H1, . . . , HB].

We study a case where imperfect CSI is the actual CSI
plus AWGN. This model of noisy CSI comes from exploiting
channel reciprocity [8], [9] for which the channel realisation
is identical at both ends but the channel estimation noises are



independent, i.e.

CSIT H̃b = Hb + Ẽb (2)

CSIR Ĥb = Hb + Êb (3)

where Ẽb and Êb are the CSIT and CSIR noises, respectively;
they have zero mean and their variances are given by σ2

ẽ =
P−dẽ and σ2

ê = P−dê , respectively, where P is the average
SNR. For a fixed fading realisation Hb = hb, the estimates
at both ends are independent. The imperfect CSIR model is
widely used in a pilot-based channel estimation at the receiver
for which the error variance is proportional to the reciprocal of
the pilot SNR [10]. The same estimation technique can also be
performed at the transmitter, i.e. by transmitting pilot symbols
at the reverse link of a time-division duplex (TDD) system [8],
[9]. We further incorporate the parameters dẽ > 0 and dê > 0,
denoting the channel estimation error diversities.
A message m ∈ {1, . . . , 2BTR} is mapped into a codeword

x(m) of the code C with rate R ! 1
BT

log2 |C|; we assume
that R is a fixed positive constant. The codebook is drawn
i.i.d. from a constellation X . Herein we focus on Gaussian
and discrete constellations. The constellation X is assumed
to have unit energy, i.e. E

[

|X |2
]

= 1. We denote n(b) as
the number of fading blocks used for the power adaptation at
block b. The power at block b, pb, is adapted based on the
imperfect CSIT vector

H̃n(b) =
[

H̃1, . . . , H̃n(b)

]

(4)

such that pb = pb(H̃n(b)). The power allocation vector is then

defined as p !
[

p1(H̃n(1)), . . . , pB(H̃n(B))
]

. In general, n(b)

can be any integer-function of b. In this paper, we focus on
the following cases.

1) Full-CSIT power allocation if n(b) = B for all b =
1, . . . , B. Imperfect fading estimates for the whole B
blocks in a codeword are available at the transmitter
prior to transmission.

2) Causal-CSIT power allocation if n(b) = b − τd with
a fixed delay τd ≥ 0 for any b = 1, . . . , B. This
corresponds to CSIT being limited only to the past
imperfect fading estimates due to the delay τd.

3) Predictive-CSIT power allocation if n(b) = min(B, b+
τf) with a fixed τf ≥ 0 (indicating the number of
predicted fading blocks) for any b = 1, . . . , B. This cor-
responds to CSIT including past, current and a number
of predicted future fading estimates.

For the above power allocation schemes, the corresponding
long-term average power constraint is given by

E

[

1

B

B
∑

b=1

pb(H̃n(b))

]

≤ P. (5)

Nearest neighbour decoding is used to infer the transmitted
message. Due to its optimality under perfect CSIR and its
simplicity, this decoder is widely used in practice even when
perfect CSIR is not available. With imperfect CSIR, the
decoder treats the imperfect channel estimate as if it were

perfect. It first computes the following metric for a given y,

imperfect CSIR, Ĥ = ĥ =
[

ĥ1, . . . , ĥB

]

, and power level

p = [p1(h̃n(1)), . . . , pB(h̃n(B))]

Q
(

y, ĥ,p,x(m)
)

∝ exp

(

−
B
∑

b=1

‖yb −
√
pbĥbxb(m)‖2

)

(6)

and then outputs

m̂ = arg max
m∈{1,...,2BTR}

Q
(

y, ĥ,p,x(m)
)

. (7)

III. INFORMATION-THEORETIC PRELIMINARIES

Due to the noisy fading estimates, the above nearest neigh-
bour decoder is mismatched [7], [11]. The fundamental limit
(in the limit for large T ) of the channel for the inputs that have
been generated i.i.d. (i.i.d. inputs) is the generalised outage
probability [7], [12]

Pgout(R) ! Pr
{

Igmi(H , Ĥ,p) < R
}

(8)

where

Igmi(h, ĥ,p) = sup
s≥0

1

B

B
∑

b=1

Igmi
b (s, hb, ĥb, pb) (9)

is the generalised mutual information (GMI) for fading h,
receiver estimate ĥ and power level p, and

Igmi
b (s, hb, ĥb, pb) = (10)

E



log2
Qs

(

Y, ĥb, pb, X
)

E

[

Qs
(

Y, ĥb, pb, X ′
)
∣

∣

∣
Y, hb, ĥb, pb

]

∣

∣

∣

∣

∣

∣

hb, ĥb, pb



 .

This implies that whenever the fading and channel estimate
is such that Igmi(h, ĥ,p) is less than the data rate R, the
probability of decoding error tends to one in the limit of large
block length T . On the other hand, when Igmi(h, ĥ,p) is
greater than or equal to R, the probability of decoding error
vanishes for increasing block length.

We are interested in characterising the behaviour of
Pgout(R) at high SNR. One important figure of merit is the
outage diversity or outage SNR exponent defined as

d ! lim
P→∞

−
logPgout(R)

logP
. (11)

Recent work [7] showed that with uniform power allocation
the optimal diversity is the function of the perfect CSIR
diversity and the quality of the imperfect CSIR as

duicsir = min(1, dê)× ducsir (12)

where superscript u denotes the uniform power allocation, the
subscript csir denotes perfect CSIR. From [3], we have that

ducsir =

{

B, for Gaussian inputs

dB(R) ! 1 +
⌊

B
(

1− R
M

)⌋

, for discrete inputs
(13)

where dB is the Singleton bound [2], and where M !



log2 |X |. This result implies that if the channel estimation error
is less than or equal to the inverse of the SNR, the perfect
CSIR diversity is achievable. Otherwise, the imperfect CSIR
diversity is smaller than the perfect CSIR diversity.
If CSIT is available, then the transmitter can adapt its trans-

mission power to minimise the generalised outage probability.
The idea is that in a very bad channel realisation, power
can be saved and used when channel conditions improve.
Reference [4] showed that if perfect CSI is available at both
communication ends, then zero outage is possible, implying
that delay-limited capacity is positive. References [5], [6]
extend the results to perfect CSIR and mismatched CSIT setup.
In this case, the SNR exponent is

dpicsit = ducsir (1 + ducsirdẽ) (14)

where superscript p denotes power control.
In practical scenarios, both CSIR and CSIT will be imper-

fect. It is therefore of practical interest to study mismatched
CSI at both ends under a unified framework. In this work,
we find the SNR exponents with imperfect CSI at both ends.
In particular, the power allocation algorithm is given by the
solution to the following optimisation problem

minimize Pgout(R)

subject to E

[

1

B

B
∑

b=1

pb(H̃n(b))

]

≤ P

pb(H̃n(b)) ≥ 0, b = 1, . . . , B.

(15)

Solving the above optimisation problem can be difficult in
general. Given our CSIT model, the minimum-outage power
allocation is difficult to find since Pgout(R) depends on both
actual channel and channel estimate. Nevertheless, we will
see that despite this difficulty, studying the behaviour of the
optimal solution at high SNR is possible. We will use the
technique in [6] to derive the asymptotic power allocation that
results in no loss in terms of outage exponent.

IV. OUTAGE SNR EXPONENTS

Depending on the type of CSIT (full, causal or predictive),
we will have a different SNR exponent for the corresponding
power allocation schemes. In particular, for full CSIT we have
the following result.
Theorem 1 (Full CSIT): For full CSIT (n(b) = B), the

outage SNR exponent with imperfect CSI at both ends is

dpicsi =

{

ducsirdê, if dê ≤ 1 + ducsirdẽ

ducsir (1 + ducsirdẽ) , if dê > 1 + ducsirdẽ.
(16)

This relationship holds for both Gaussian and discrete constel-
lations.

Proof: See Appendix A for a sketch.
The results highlight the trade-off on the resources spent for

estimating the channel at both ends and the effectiveness of
power control given a noisy CSIR. Power control is effective
whenever the CSIR noise variance is much smaller than the
CSIT noise variance, i.e. dê > 1 + ducsirdẽ. For example, with
Gaussian inputs dê must be larger than dẽ approximately by

a factor of B. On the other aspects, the condition of dê >
1 highlights the improvement made by power control over
uniform power allocation. Power control removes the 1 in the
expression min(1, dê) (12). Outage events are dominated by
CSIR with strong noise, i.e. for dê ≤ 1 + ducsirdẽ. Otherwise,
outage events are dominated by the mismatched CSIT.

Remark 1: CSIR has stronger influence in the outage diver-
sity than CSIT. With perfect CSIR, a very bad CSIT has the
same effect as having no power control. On the other hand,
with perfect CSIT, a very bad CSIR results in the diversity
approaching zero.

The result in Theorem 1 is consistent previous results.
In particular, we recover the mismatched-CSIT perfect-CSIR
outage exponent in [5], [6] by letting dê ↑ ∞ (perfect CSIR),
and the no-CSIT mismatched-CSIR [7] by letting dẽ ↓ 0.
Remark 2: With mismatched CSIR Ĥb, having dẽ = ∞ or

dẽ = dê at the transmitter does not make any difference, as
the diversity is given by dêducsir in both cases. Instead, with
mismatched CSIT H̃b, having dê = ∞ or dê = dẽ at the
receiver results in different exponents. In the former case, the
diversity is given by ducsir(1 + ducsirdẽ) whereas in the latter
case the diversity is given by dẽducsir.
The above discussion assumes full imperfect CSIT knowl-

edge for each codeword. In some cases, CSIT may only be
available causally (with some delay). In this case, we have the
following results.

Theorem 2 (Causal CSIT): For causal CSIT with delay τd
(n(b) = b− τd), the outage diversity is given by

dpicsi =







dêB, if dê ≤ 1

B, if dê > 1 and B − τd ≤ 0
∑B

i=1 ai, if dê > 1 and B − τd > 0.

(17)

where

ai =



















1,

i = 1, . . . , τd

min
(

dê, ai−1 +min(ai−τd , dẽ)
)

,

i = τd + 1, . . . , B.

(18)

for Gaussian inputs and

dpicsi =

{

dêdB(R), if dê ≤ 1
∑dB(R)

i=1 ci, if dê > 1
(19)

where

ci =







1, i = 1, . . . , τd

min
(

dê, ci−1 +min(ci−τd , dẽ)
)

,

i = τd + 1, . . . , dB(R).
(20)

for discrete inputs.

Proof: See Appendix A for a sketch.

There are two cases for which power control cannot increase
the diversity. First, when the CSIR diversity is not reliable,
i.e. dê ≤ 1. Second, when the delay of obtaining CSIT is
long (τd ≥ ducsir). Power control does not improve diversity
for example if the delay of obtaining CSIT is greater than
B for Gaussian inputs or greater than dB(R) for discrete



inputs. Hence, discrete inputs have a more stringent delay
requirement in obtaining causal CSIT. To achieve the perfect
CSI diversity with power adaptation, the CSIR reliability and
the CSIT reliability need to be above a certain threshold. It is
straightforward to check that the thresholds are given by

dê ≥ a∗B−1 + a∗B−τd
(21)

dẽ ≥ a∗B−τd
(22)

for Gaussian inputs and

dê ≥ c∗dB(R)−1 + c∗dB(R)−τd
(23)

dẽ ≥ c∗dB(R)−τd
(24)

for discrete inputs, where the symbol ∗ indicates the coefficient
with dê ↑ ∞ and dẽ ↑ ∞. It is observed that the requirement
for decoding (CSIR) reliability is much higher than the CSIT
reliability to achieve the perfect CSI diversity.

If the transmitter is able to predict some future fading
coefficients, then we have following results.

Theorem 3 (Predictive CSIT): For predictive CSIT (n(b) =
min(B, b + τf)) we have that for Gaussian inputs

dpicsi =

{

dêB, if dê ≤ 1
∑B

b=1 min (dê, 1 + dẽmin(B, b+ τf)) , if dê > 1.
(25)

On the other hand, for discrete inputs, the outage diversity is
given by

dpicsi =































dêdB(R),

if dê ≤ 1
∑B

b=$BR

M %

min
(

dê, 1 + dẽ
[

min(B, b + τf)−
⌈

BR
M

⌉

+ 1
]

+

)

,

if dê > 1.
(26)

Proof: See Appendix A for a sketch.

We observe how the predictive-CSIT power control im-
proves the outage diversity via a recursion in the power
adaptation. Note that with

dê ≥ 1 + ducsirdẽ (27)

we essentially obtain the same diversity as in the noiseless
CSIR case. If the predictive time interval τf satisfies

τf ≥
{

B − 1, for Gaussian inputs

dB(R)− 1, for discrete inputs,
(28)

then the diversity obtained with predictive CSIT is same as
the diversity obtained with full CSIT.

For dê ≤ 1, we note that any power control with full, causal
or predictive CSIT cannot improve the outage diversity with
respect to that achieved with uniform power allocation. This
corresponds to the case where the CSIR is too unreliable.

V. CONCLUSION

We have studied the effects of imperfect CSI on the per-
formance of data transmission over block-fading channels.
In particular, we derived the outage SNR exponent as a
function of CSIR and CSIT noise variances, σ2

ê = P−dê and
σ2
ẽ = P−dẽ where P is the average data transmission power.

We showed that noisy CSIR has more detrimental effects on
the SNR exponent than noisy CSIT. The results give insight
into the design of pilot-assisted channel estimation in block-
fading channels. If pilot symbols from both ends are sent with
power P (dê = dẽ = 1), then the CSI feedback and the power
adaptation is useless in terms of the SNR exponent. On a
positive note, if the pilot signalling can be done at a power
level sufficiently higher than P , then one can reap significant
benefits due to power adaptation across blocks.

APPENDIX A
PROOF SKETCH

Due to space limitations, only a proof sketch is pro-
vided. From Section II, we define a new random variable
H̄b !

√
2

σẽ
H̃b. Given Hb, H̄b is a complex Gaussian random

variable with mean of
√
2

σẽ
Hb and a scaled identity variance.

Let γb = |hb|2, γ̂b = |ĥb|2, γ̄b = |h̄b|2, γ̃b = |h̃b|2 and

ξ̂b = |êb|2. We use the following change of variables to
analyse the behaviour of the system for large P : αb = − log γb

logP
,

α̂b = − log γ̂b

logP
, ᾱb = − log γ̄b

log P
, α̃b = − log γ̃b

logP
, θ̂b = − log ξ̂b

logP
. We

define: γ ! [γ1, . . . , γB], γ̂ ! [γ̂1, . . . , γ̂B], γ̄ ! [γ̄1, . . . , γ̄B],
γ̃ ! [γ̃1, . . . , γ̃B] and ξ̂ ! [ξ̂1, . . . , ξ̂B]. α, α̂, ᾱ, α̃ and θ̂
follow accordingly.
There are three key steps of proving the results in Theorems

1, 2 and 3. The first one, is finding the asymptotic behaviour
of the considered power allocation scheme. The second one,
is evaluating the asymptotic probability density function of
the fading for large P . The third step, is characterising the
asymptotic outage set and finding infimum solutions that give
the exponent according to Varadhan’s lemma [13].

A. Asymptotic Power Allocation

H̃b can be decomposed into the magnitude |H̃b| (Rayleigh
distributed) and phase φH̃b

(uniformly distributed over
[−π, π)). Since the probability density function (p.d.f.) of the
phase is 1/(2π), which is constant, it can be shown that
the phase distribution does not affect the asymptotic power
allocation at large SNR. Then, we express the power as a
function of magnitude square, pb = pb(γ̃n(b)).
One can show that the power allocation with constraint

E
[

pb(γ̃n(b))
]

≤ BP for all b = 1, . . . , B results in the upper
bound to the outage SNR exponent; note that this violates
the constraint in (15). On the other hand, one can consider
a suboptimal power allocation such that E

[

pb(γ̃n(b))
]

≤ P
to obtain the lower bound to the outage SNR exponent. Let
pb(γ̃n(b)) = Pωb(γ̃n(b)), then the optimal power allocation with
full CSIT satisfies

∫

γ̃∈RB
+

Pωb(γ̃)f(γ̃)dγ̃
.
≤ P (29)



where
.
≤ is defined as the exponential inequality , i.e. g(P )

.
≤

P k if limP→∞
log g(P )
logP ≤ k.

.
= and

.
≥ are similarly defined.

Herein we disregard n(b) from the subscript of the vector γ̃
since we have n(b) = B for full CSIT. The dot inequality
above holds because B is finite and is not a function of P .
Using the change of variables described above (from γ̃b to α̃b)
and applying Varadhan’s lemma [13] as in [5], [6] yields

sup
α̃∈RB

+

{

ωb(α̃)−
B
∑

b=1

α̃b

}

≤ 1. (30)

Since the generalised outage probability is a monotonously
non-increasing function of the SNR at high SNR [7], the
exponent of the optimum allocation satisfies

ωb(α̃) = 1 +
B
∑

b=1

α̃b (31)

asymptotically for large SNR. As for the vector ᾱ, the above
exponent can be expressed as

ωb(ᾱ) = 1 +Bdẽ +
B
∑

b=1

ᾱb. (32)

We can follow the same argument above and the steps in
[7], [14], and show that the exponent of the optimal allocation
with causal CSIT is given by

ωb

(

ᾱn(b)

)

= 1 +min

(

b−τd
∑

b′=1

(ᾱb′ + dẽ), [dê − 1]+

)

(33)

where n(b) = b − τd. On the other hand, using the steps in
[7], [14], the exponent of the optimal allocation with predictive
CSIT is given by

ωb

(

ᾱn(b)

)

= 1 +min





min(B,b+τf)
∑

b′=1

(ᾱb′ + dẽ), [dê − 1]+



 (34)

where n(b) = min(B, b + τf). Note min(B, b + τf) is
used because any knowledge for blocks beyond the current
codeword does not improve performance.

B. Generalised Outage Probability

Evaluating Pgout(R) requires the p.d.f. of the joint random
variables that defines the outage set. Let OX be the outage set
for input constellation X and a given power allocation. We
have that the outage probability expression at high SNR is

Pgout(R)
.
=

∫

OX

f(ᾱ|α)f(α)f(θ̂)dᾱdαdθ̂
.
= P−d. (35)

The exponent d can be found by invoking Varadhan’s lemma
[13] as in [6], [7] yielding

d = inf
O′

X

{

∑

b: 0≤α<dẽ,ᾱb=αb−dẽ,θ̂b≥dê

αb + (θ̂b − dê)

+
∑

b: α≥dẽ,ᾱb≥0,θ̂b≥dê

ᾱb + αb + (θ̂b − dê)

}

.(36)

where

O′
X = OX ∩

{

⋂

b

{0 ≤ α < dẽ, ᾱb = αb − dẽ, θ̂b ≥ dê}∪

{α ≥ dẽ, ᾱb ≥ 0, θ̂b ≥ dê}
}

. (37)

C. Bound to the Outage Set and Finding the Infimum Solution

Deriving the exact OX based on GMI expression in (9) and
(10) for a given constellation X is not an easy task. The main
difficulty is to find the optimising s taking into account all B
fading blocks. We follow the steps in reference [7] to tackle
the problem by finding the upper and lower bound to GMI
with the power allocation described in the previous section.
Note that we refer the resulting set from the lower bound to
the GMI as OX and the resulting set from the upper bound
to the GMI as OX . It follows that

OX ⊆ OX ⊆ OX . (38)

The procedures are then continued by solving the infimum
problem in (36) using these bounds. The outage exponent
bounds derived using OX and OX are tight.
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