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Abstract— We show that Gallager’s random coding error
exponent of an arbitrary binary-input memoryless symmetric
channel is upper-bounded by that of the binary erasure channel
and lower-bounded by that of the binary-symmetric channel of
the same capacity. We apply the result to find the extremes of
the channel dispersion for the aforementioned class of channels.

I. PRELIMINARIES

We consider a classical communication scenario, where
equiprobable messages m ∈ {1, . . . ,M} are to be transmitted
over a binary-input memoryless symmetric channel described
by the channel transition probabilities

PY |X(y|x) =
n�

i=1

PY |X(yi|xi) (1)

where n is the sequence length, X ∈ Xn,Y ∈ Yn are
the random variables corresponding to the channel input and
output sequences, respectively, X is the random variable
corresponding to the channel inputs taking values x on the
binary alphabet X = {x0, x1}, Y is the random variable
corresponding to the channel outputs taking values y on
alphabet Y . Therefore, the channel is fully characterized by
the probabilities PY |X(y|x0), PY |X(y|x1) for every y ∈ Y .

We consider symmetric channels [1], i.e., channels for
which the channel transition probability matrix (rows corre-
sponding to input values) is such that it can be partitioned
in submatrices for which each row is a permutation of any
other row and each column is a permutation of any other
column. Strongly symmetric channels are those for which the
channel transition probability matrix fulfils this permutation
property (without partitioning into subsets). Examples of the
above channels include the binary erasure channel (BEC) and
the binary symmetric channel (BSC). This also extends to
channels with continuous output alphabets, such as the binary-
input additive white Gaussian noise channel (BIAWGN).

Each of the M messages is mapped into a codeword
x(m) =

�
x1(m), . . . , xn(m)

�
with an encoder. The code C is

the collection of all codewords. The code rate is R = 1
n log M .

We consider maximum-likelihood (ML) decoding for which
the estimated transmitted message m̂ is obtained as follows

m̂ = arg max
m∈{1,...,M}

PY |X
�
y|x(m)

�
. (2)
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The average probability of a message error is defined as

Pe =
1
M

M�

m=1

Pe(m) (3)

where Pe(m) is the probability of decoding message m̂ �= m
when message m was transmitted. A code rate R is said to be
achievable if for every � > 0 there exists a code of length n of
rate not smaller than R such that Pe < �, for a suitably large
n. The channel capacity C is the supremum of all achievable
rates. For memoryless channels, the channel capacity is [2]

C = max
PX(X)

I(X;Y ) (4)

where
I(X;Y ) = E

�
log

PY |X(Y |X)
PY (Y )

�
(5)

is the mutual information.
Gallager proved the achievability of the channel capacity

by showing that the code ensemble average error probability
under ML decoding can be upperbounded by [1]

P̄e ≤ e−nEr(R) (6)

where
Er(R) = max

0≤ρ≤1
E0(ρ)− ρR (7)

is the random coding error exponent, and E0(ρ) � − log F0(ρ)
is the Gallager function with

F0(ρ) � E
��

�

x�∈X
PX(x�)

PY |X(Y |x�)
1

1+ρ

PY |X(Y |X)
1

1+ρ

�ρ�
. (8)

The above result provides the achievability of rates R <
I(X;Y ), since the random coding exponent is positive for
R < I(X;Y ). For symmetric channels, equiprobable inputs
not only maximize the mutual information but also the error
exponent [3]. For example, the BEC and BSC have that

F bec
0 (ρ) = 2−ρ(1− ε) + ε (9)

F bsc
0 (ρ) = 2−ρ

�
ε

1
1+ρ + (1− ε)

1
1+ρ

�1+ρ
(10)

where ε denotes the erasure/crossover probability, respectively.
Figure 1 plots the error exponents for the BEC, BSC,

BIAWGN and Rayleigh fading BIAWGN with perfect channel
state information. The channel parameters are chosen such that
the channel capacity is the same for all channels.

For future reference, we parametrize the above functions for
a fixed channel capacity, i.e., E0(ρ;C) is the Gallager function
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Fig. 1. Random coding error exponents of the BEC, BSC, BIAWGN
(dashed), and Rayleigh fading BIAWGN (dash-dotted).

for a channel of capacity C. The functions F0(ρ;C) and
Er(R;C) are defined similarly. Using the capacity expressions
for the BEC and BSC we obtain

F bec
0 (ρ;C) =

�
1
2ρ
− 1

�
C + 1 (11)

F bsc
0 (ρ;C) =

1
2ρ

��
h−1(1− C)

� 1
1+ρ +

�
1− h−1(1− C)

� 1
1+ρ

�1+ρ

(12)

where h(p) = −p log p − (1 − p) log(1 − p) is the binary
entropy function and h−1(x) denotes its inverse.

II. MAIN RESULT

The main results of this paper are Theorem 2.2, Corollary
2.1, and Theorem 2.3 and their proofs rely on the following
2 results.

Theorem 2.1 (BSC Channel Decomposition [4], [5]):

Every binary-input symmetric memoryless channel can be
decomposed into subchannels that are BSCs.

In this decomposition into BSC subchannels, each chan-
nel output Y is associated with an index A = f(Y ),
which depends exclusively on the channel output. Denot-
ing by PA(a) the probability mass or density function of
subchannel a, and by Y(a) the corresponding binary out-
put alphabet of BSC index a, we have that PY |X(y|x) =
PY,A|X(y, a|x) = PY |X,A(y|x, a)PA(a) [4], [5]. Similarly, let
C(A) = I(X;Y |A) denote the capacity of BSC subchannel
A. Note that E[C(A)] = C [4], [5].

Lemma 2.1: The function F bsc
0 (ρ;C) is concave (convex-

∩) in C ∈ [0, 1] for any 0 ≤ ρ ≤ 1.
Proof: In order to show the result, one needs to evaluate

the second derivative of F bsc
0 (ρ;C) with respect to C and

check the sign. This is a tedious and lengthy calculation, and
details are omitted for the sake of readability.

Theorem 2.2: Consider an arbitrary binary-input symmetric
memoryless channel. Then, the function F0(ρ;C) for 0 ≤ ρ ≤
1 and 0 ≤ C ≤ 1 can be upper and lower bounded as follows

F bec
0 (ρ;C) ≤ F0(ρ;C) ≤ F bsc

0 (ρ;C). (13)

Proof: The proof is built around the decomposition
of binary-input memoryless symmetric channels into BSCs
(Theorem 2.1). Assume such a decomposition. Then, since
PY |X(y|x) = PY |X,A(y|x, a)PA(a) [4], [5] we have that

F0(ρ;C) = E
��

�

x�∈X
PX(x�)

PY |X(Y |x�)
1

1+ρ

PY |X(Y |X)
1

1+ρ

�ρ�
(14)

= E
�
E

��
�

x�∈X
PX(x�)

PY |X,A(Y |x�, A)
1

1+ρ

PY |X,A(Y |X, A)
1

1+ρ

�ρ ����� A

��

(15)
= E

�
F bsc

0 (ρ;C(A))
�
. (16)

From Lemma 2.1, the function F bsc
0 (ρ;C) is concave. There-

fore, by applying Jensen’s inequality, we obtain

F0(ρ;C) = E
�
F bsc

0 (ρ;C(A))
�

(17)

≤ F bsc
0 (ρ; E[C(A)]) (18)

= F bsc
0 (ρ;C). (19)

The bound is obviously achieved if the channel is a BSC.
Since F bsc

0 (ρ;C) is concave, we lower-bound it by a straight
line joining the points F bsc

0 (ρ; 0) (C = 0) and F bsc
0 (ρ; 1) (C =

1) (see Figure 2), and then evaluate the expectation, i.e.,

F bsc
0 (ρ;C) ≥ F bsc

0 (ρ; 0) + C
�
F bsc

0 (ρ; 1)− F bsc
0 (ρ; 0)

�

(20)
= 1 + C(2−ρ − 1) (21)
= F bec

0 (ρ;C). (22)

This bound is obviously achieved if the channel is a BEC.
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Fig. 2. Extremes of F0(ρ; C) for ρ = 0, 0.2, 0.4, 0.6, 0.8, 1.



The following results follow from Theorem 2.2.
Corollary 2.1: Consider an arbitrary binary-input symmet-

ric memoryless channel. Then, the function E0(ρ;C) for 0 ≤
ρ ≤ 1 and 0 ≤ C ≤ 1 can be upper and lower bounded as
follows

Ebsc
0 (ρ;C) ≤ E0(ρ;C) ≤ Ebec

0 (ρ;C). (23)

Furthermore, Ebsc
0 (ρ;C) is convex (convex-∪) in C.

Proof: The first claim follows directly from Theorem 2.2
and the fact that b(x) = − log x reverses the inequalities. The
second claim follows convexity results on composed functions
[6], since b(x) = − log x is convex and non-increasing, and
F bsc

0 (ρ;C) is concave.
Theorem 2.3 (Extremes of Error Exponents): Consider an

arbitrary binary-input symmetric memoryless channel. Then,
the random coding exponent Er(R;C) for 0 ≤ C ≤ 1 can be
upper and lower bounded as follows

Ebsc
r (R;C) ≤ Er(R;C) ≤ Ebec

r (R;C). (24)

Figure 1 illustrates the extremes of error exponents (Theo-
rem 2.3). As we observe, the error exponents for the BIAWGN
channel of the same capacity (with and without fading) fall
between that of the BSC and that of the BEC. The error
exponent of an arbitrary binary-input memoryless symmetric
channel must lie in the shaded area.

III. APPLICATION: EXTREMES OF CHANNEL DISPERSION

The channel dispersion was defined in [7] as

V = lim
Pe→0

lim
n→∞

n

�
C −R(n, Pe)

Q−1(Pe)

�2

(25)

The optimal rate for finite n and non-vanishing error prob-
ability can be approximated as [8], [7]

R(n, Pe) ≈ C −
�

V

n
Q−1(Pe). (26)

For discrete memoryless channels, Gallager’s bound is tight at
rates close to capacity [1]. Therefore, the channel dispersion
can be obtained directly from the error exponent. In particular,
one has that [9], [7]

V (C) =
1

E��r (R = C;C)
= −E��0 (ρ = 0;C) (27)

where we have parametrized V as a function of C,
E��r (R;C) = ∂2Er(R;C)

∂R2 and E��0 (ρ;C) = ∂2E0(ρ;C)
∂ρ2 . The

channel dispersion for the BEC and BSC is respectively given
by [7],

V bec(C) = C(1− C) (28)
V bsc(C)

= h−1(1− C)
�
1− h−1(1− C)

�
log2 1− h−1(1− C)

h−1(1− C)
(29)

We have the following result, illustrated in Figure 3.
Theorem 3.1 (Extremes of Channel Dispersion): Consider

an arbitrary binary-input symmetric memoryless channel.
Then, the channel dispersion V (C) can be upper and lower
bounded as follows

V bec(C) ≤ V (C) ≤ V bsc(C). (30)

Proof: For an arbitrary channel with fixed C we have that
E0(0;C) = 0, and E�0(0;C) = ∂E0(ρ;C)

∂ρ

��
ρ=0

= C. Therefore,
a second-order Taylor expansion of E0(ρ;C) around ρ = 0
shows that E��0 (0;C) will have the same extremes as E0(ρ;C).
Hence, applying Corollary 2.1 to (27) yields the desired result.
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Fig. 3. Extremes of V (C). The dashed line corresponds to the BIAWGN
channel. The shaded area indicates the possible region.
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