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Abstract— This paper considers random-coding bounds to the
decoding error probability with threshold decoders. A slightly
improved version of the dependence-testing bound is derived.
A loosening of this bound generates a family of Feinstein-
like bounds, which improve on Feinstein’s original version. The
error exponents of these bounds are determined and simple, yet
accurate, saddlepoint approximations to the corresponding error
probabilities are derived.

I. INTRODUCTION

Recently, spurred by the construction of near-capacity-
achieving codes, renewed attention has been paid to the error
probability in the finite-length regime. In particular, Polyan-
skiy et al. [1] have derived a number of new results, such as the
random-coding union (RCU) bound, the dependence-testing
bound (DT), and the κβ bound among others. A key quantity
in their development is the information density, defined as

i(x,y) = log
PY |X(y|x)

PY (y)
(1)

where PY |X(y|x) is the channel transition probability and
x,y are the channel input and output sequences, respectively.

Instead of building our analysis around the concept in-
formation density, we shall assume threshold decoders us-
ing the usual maximum-likelihood (ML) metric q(x,y) =

PY |X(y|x). More precisely, we consider the Feinstein-like
decoders analyzed in [1], which examine sequentially all
codewords v, and output the first codeword whose metric
q(x(v),y) exceeds a pre-specified threshold. Our first con-
tribution is the optimization of a codeword- and channel-
output-dependent threshold γ(v,y) to obtain a simple, slightly
improved DT bound.

The DT bound may be loosened by choosing a suboptimal
threshold to obtain a family of Feinstein-type bounds. In
particular, the information density is replaced by a generalized
information density is(x,y), given by

is(x,y) = log
q(x,y)s

E[q(X �,y)s]
, (2)
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where s ≥ 0. As noticed recently [2], the cumulant generating
function of this generalized information density is closely
related to Gallager’s E0(ρ, s) function [3]. Indeed, for an i.i.d.
codebook and a memoryless channel, we have that

κ(τ) = log E[eτis(X,Y )
] (3)

= −nE0(−τ, s). (4)

Our second contribution is the determination of the error
exponent attained by these bounds in terms of Gallager’s
E0(ρ, s) function, thereby extending Shannon’s analysis of
Feinstein’s bound [4]. Further, as the bounds may be expressed
as a tail probability of a particular random variable related
to the (generalized) information density, we approximate this
probability by the saddlepoint (or Laplace) method. Essentially
as easy to compute as the Gaussian approximation [1], this
approximation turns out to be more accurate, and thus provides
an efficient method to estimate the effective capacity for finite
block length and non-zero error probability, in particular when
combined with the RCU bound [2].

Notation: Random variables are denoted by capital letters
and their realization by small letters. Sequences are identified
by a boldface font. The probability of an event is denoted
by Pr{·} and the expectation operator is denoted by E[·].
Logarithms are in natural units and information rates in nats,
except in the examples, where bits are used.

II. UPPER BOUNDS TO THE ERROR PROBABILITY

We adopt the conventional setup in channel coding.
First, and for a given information message v, with v ∈
{1, 2, . . . ,M}, the encoder outputs a codeword of length n
x(v) ∈ Xn, where X is the symbol channel input alphabet.
One could consider more general vector alphabets and the
error probability analysis remains unchanged. The coding rate
R is defined as R � 1

n log M . The corresponding channel
output of length n, denoted by y ∈ Yn, where Y is the symbol
channel output alphabet. The output sequence is generated
according to the probability transition PY |X(y|x). Then, the
decoder computes ML decoding metrics, i. e. q(x,y) =

PY |X(y|x), and outputs a message v̂ according to the thresh-
olding procedure to be specified later.

We study the probability that the decoder outputs a message
different from the one sent, i. e. Pr{V̂ �= V }. Specifically, we



consider the average (codeword) error probability P̄e over the
ensemble of (randomly selected) i.i.d. codewords.

We consider general channels with ML decoding metric,
i. e. q(x,y) = PY |X(y|x). In our numerical examples, we
only consider memoryless channels, for which PY |X(y|x) =�n

i=1 PY |X(yi|xi), with PY |X(y|x) being the symbol transi-
tion probability.

A. The Dependence-Testing Bound
The DT bound was recently derived by Polyanskiy et al.

[1, Thm. 17] by using a threshold decoder which sequentially
considers all messages, and outputs the first message whose
metric exceeds a pre-determined threshold. We next improve
(slightly) this bound by using a message-and output-dependent
threshold γ(v,y).

For fixed message, codebook, and channel output, an error is
made if the corresponding metric does not exceed the thresh-
old, q(X(i),Y ) ≤ γ(i,Y ), or if there exists an alternative
codeword with lower index and metric above the threshold,
q(X(j),Y ) > γ(j, Y ), with j < i. Applying the union bound
and averaging over all messages and codebooks, we find that
the average error probability P̄e is upper bounded by

P̄e ≤
1

M

M�

i=1

�
Pr

�
q(X(i),Y ) ≤ γ(i, Y )

�
+

+

�

j<i

Pr
�
q(X(j),Y ) > γ(j, Y )|X(i)

��
(5)

≤ E

�
1

M

M�

i=1

�
Pr

�
q(X(i),Y ) ≤ γ(i, Y )|Y

�
+

+ (M − i) Pr
�
q(X(i),Y ) > γ(i,Y )|Y

���
, (6)

where we rearranged the summation over j and explicitly
wrote the expectation over Y . In Eq. (6), the summands are
respectively distributed according to PX|Y and PX .

Since the inequalities in Eq. (6) are equivalent to
PX|Y (x|y)

PX(x)
≶ γ(i, y)

q(x,y)

PX|Y (x|y)

PX(x)
, (7)

the threshold γ(i,y) may be optimized as in [1], by noting
that in a hypothesis test between PX|Y (x|y) and PX , the
optimum threshold satisfies

(M − i) =
γ(i, y)

q(x,y)

PX|Y (x|y)

PX(x)
(8)

=
γ(i, y)

q(x,y)

PY |X(y|x)

PY (y)
(9)

=
γ(i, y)

PY (y)
. (10)

Hence, the choice γ(i, y) = (M − i)PY (y) gives the tighest
bound. Moreover, using the relation [5, Eq. (2.132)]

P

�
dP

dQ
≤ γ�

�
+ γ�Q

�
dP

dQ
> γ�

�
= EP

�
min

�
1, γ�

dQ

dP

��
,

(11)

we may compactly rewrite the bound in Eq. (6) as

P̄e ≤
1

M

�

i

E

�
min

�
1, (M − i)

PY (Y )

PY |X(Y |X)

��
. (12)

The expectation is done according to PXPY |X .
Furthermore, since 1

M

�
i γ(i,y) =

M−1
2 PY (y), and

min{1, ax} is concave in x, applying Jensen’s inequality
relaxes Eq. (12) to the form derived in [1],

P̄e ≤ dtb(n, M) � E

�
min

�
1,

M − 1

2

PY (Y )

PY |X(Y |X)

��

(13)

= E

�
e−

�
i(X,Y )−log M−1

2

�+�
, (14)

where (x)+ � max{0, x}.

B. Generalized Feinstein’s Bound
We next relax the DT bound by applying Markov’s inequal-

ity (with s > 0) to the second summand of the expectation in
Eq. (6), namely

P̄e ≤ E

�
1

M

M�

i=1

Pr
�
q(X(i),Y ) ≤ γ(i,Y )|Y

�
+

+ (M − i)
E

�
q(X,Y )s|Y

�

γ(i,Y )s

�
. (15)

Now, the choice γ� = (M − i)
E[q(X,Y )s|Y ]

γ(i, Y )s
gives

P̄e ≤ E

�
Pr

�
q(X,Y )s

E[q(X �,Y )s|Y ]
≤ M − I

γ�

��� Y

�
+ γ�

�
(16)

= Pr

�
is(X,Y ) ≤ log

M − I

γ�

�
+ γ�, (17)

where I is equiprobably distributed in the set {1, 2, . . . ,M}.
The classical Feinstein’s bound [6] is obtained by setting

s = 1, upper bounding the term dependent of I , M − I , by
M (which also gives a maximal error probability version of
the bound), and minimizing over γ�. For later use, we define

fb(n, M) � min
γ�>0

Pr

�
is(X,Y ) ≤ log

M

γ�

�
+ γ�. (18)

Clearly, other choices of the thresholds γ(i,y) may result in
tighter bounds, with the DT bound in the previous section
dominating all these variants.

III. ERROR EXPONENTS

We wish to bound the channel reliability function by finding
the exponents Edtb(R) and Efb(R), respectively given by

Edtb(R) � lim
n→∞

− 1

n
log dtb(n, M) (19)

Efb(R) � sup
s

lim
n→∞

− 1

n
log fb(n, M). (20)

We make use of large-deviations theory, which gives the rate of
exponential decay, by exploiting the close connection between
the bounds and the tail probability of the rv is(X,Y ).



A. Error Exponent of the DT Bound

The identity for non-negative random variables A [1,
Eq. (77)],

E
�
min{1, A}

�
= Pr{A ≥ U}, (21)

where U is a uniform (0, 1) random variable, allows us to
rewrite the DT bound as

dtb(n, M) = Pr{Z ≥ 0}, Z � log
M − I

U
− i(X,Y ),

(22)
with I equiprobably distributed in the set {1, 2, . . . ,M}.

The cumulant transform κn,M (τ) of Z is obtained as

κn,M (τ) � log E

�
eτ log M−I

U −τis(X,Y )
�

(23)

= log E[(M − I)
τ
]− log(1− τ)

+ log E

��
E[q(X �,Y )|Y ]

q(X,Y )

�τ
�
. (24)

The second summand is due to the expectation over U ; hence,
for the cumulant transform to converge we need τ < 1.

An application of the Gärtner-Ellis theorem [7, Sec. 2.3] to
the tail probability of Z gives the exponent in Eq. (19) as

Edtb(R) = sup
0<τ<1

lim
n→∞

− 1

n
κn,M (τ)

= sup
0<τ<1

�
lim

n→∞
− 1

n
log E

��
E[q(X �,Y )|Y ]

q(X,Y )

�τ
�
− τR

�
.

(25)

Here we have approximated the message-dependent threshold
term with M − I , a Riemann sum, as an integral,

M�

i=1

1

M
(M − i)τ

= Mτ

�� 1

0
(1− x)

τ
dx + O(M−1

)

�
(26)

= Mτ
�
(1 + τ)

−1
+ O(M−1

)
�
, (27)

and evaluated the limit

lim
n→∞

1

n

�
log E[(M − I)

τ
]− log(1− τ)

�
= τR. (28)

For an i.i.d. codebook with PX(x) =
�n

i=1 PX(xi) and
memoryless channel and metric, we may follow Gallager [3]
and introduce the function E0(ρ, s) given by

E0(ρ, s) = − log E

��
E[q(X �, Y )s|Y ]

q(X, Y )s

�ρ
�
, (29)

and express the exponent (25) as

Edtb(R) = sup
0<ρ<1

�
E0(ρ, 1)− ρR

�
. (30)

Clearly, the exponent may not exceed Gallager’s random
coding exponent, since the latter allows for s �= 1.

B. Error Exponent of the Feinstein Bound

For the sake of simplicity, we focus on the memoryless
channel with iid codebook; the formulas extend to a more
general situation with little difficulty. Concerning Feinstein’s
bound, we may with no real loss of generality write γ in
Eq. (18) as e−nγ , so that the same reasoning applied in the
previous section gives

lim
n→∞

− 1

n
log fb(n, M) =

= max
γ>0

min

�
γ, sup

τ≤0

�
τ(R + γ)− κ(τ, s)

��
(31)

= max
γ>0

min

�
γ, sup

ρ≥0

�
E0(ρ, s)− ρ(R + γ)

��
, (32)

where κ(τ, s) is the cumulant transform of the generalized
information density and we used that κ(τ, s) = −E0(−ρ, s).

For fixed γ, we consider an increasing function of γ,
namely f1(γ) = γ, and a non-increasing function, f2(γ) =

supρ≥0

�
E0(ρ, s) − ρ(R + γ)

�
. These functions cross at the

point γ∗ = supτ≥0 E0(ρ, s) − ρ(R + γ∗). It is clear that for
γ ≤ γ∗, min(f1, f2) = f1, and that for γ ≥ γ∗, the reverse
holds min(f1, f2) = f2. It follows that the lowest possible
value of the maximum of f1 and f2 is attained precisely at
γ∗, point at which either exponent is

γ∗ = sup
ρ≥0

E0(ρ, s)− ρR

1 + ρ
. (33)

The exponent of Feinstein’s Bound obtains by optimizing over
ρ (and implicitly γ),

lim
n→∞

− 1

n
log fb(n, M) = sup

ρ≥0

E0(ρ, s)− ρR

1 + ρ
. (34)

A similar result was obtained by Shannon for Feinstein’s
classical bound, with s = 1 [4].

Following Gallager [3], the optimum choice is s =
1

1+ρ̂ .
Defining a new variable ρ� = ρ/(1 + ρ) (or ρ = ρ�/(1− ρ�)),
with 0 ≤ ρ� ≤ 1, we rewrite Efb(R) as

Efb(R) = sup
0≤ρ�≤1

(1− ρ�)E0

�
ρ�

1− ρ�
, 1− ρ�

�
− ρ�R. (35)

Lastly, we remark that, by construction, Efb(R) ≤ Edtb(R).

IV. SADDLEPOINT APPROXIMATIONS

A. Motivation

Chernoff-type bounds provide an estimate of the tail prob-
ability via the cumulant transform, namely Pr{Z ≥ ε} ∼
eκ(τ̂)−τ̂ε, with τ̂ = arg minτ

�
κ(τ) − τε

�
. Yet, clearly, a

more accurate estimate would be of the form Pr{Z ≥ ε} ∼
α(κ, τ̂) · eκ(τ̂)−τ̂ε. Saddlepoint approximations provide such
estimates [8], and have recently been used to approximate a
version of the random-coding union bound [2].



B. Approximation to the DT Bound
Using the identity in Eq. (21) we may express the DT bound

in Eq. (12) the as the tail probability of a continuous random
variable Z = log

M−I
U − i(X,Y ), whose cumulant transform

we denoted by κn,M (τ). The parameter τ is a complex number
for the purpose of deriving the saddlepoint approximation.

As the cumulant transform is the Laplace transform of the
probability density function pZ(z), the density function itself
is expressable as an inverse Laplace transform [8], namely

pZ(z) =
1

2πj

� τ̂+j∞

τ̂−j∞
eκn,M (τ)−τz

dτ, (36)

where τ̂ < 1 from the definition of κn,M . Since P̄e is the tail
above ε = 0, we compute it by integrating over z ∈ [0,∞).
Changing the integration order, we get

dtb(n, M) =
1

2πj

� τ̂+j∞

τ̂−j∞

� ∞

0
eκn,M (τ)−τz

dz dτ (37)

=
1

2πj

� τ̂+j∞

τ̂−j∞
eκn,M (τ)

�
e−τz

−τ

����
∞

0

�
dτ (38)

=
1

2πj

� τ̂+j∞

τ̂−j∞
eκn,M (τ) 1

τ
dτ, (39)

where τ̂ > 0 to guarantee convergence. For memoryless
channels, and substituting the form of κn,M (τ) we get

dtb(n, M) � 1

2πj

� ρ̂+j∞

ρ̂−j∞
en(ρR−E0(ρ,1)) 1

ρ(1− ρ2)
dρ.

(40)

We next expand the exponent in the integrand as a Taylor
series around ρ̂ = min(1, ρ̂0), with ρ̂ given by the root of
Ê�0(ρ̂0, 1) = R =

1
n log M (it is safe to replace M − 1 by

M here). Neglecting terms of order higher than 2 and up to a
common factor n, we get

ρR− E0(ρ, 1) ∼ ρ̂R−E0(ρ̂, 1) +
�
R− E�0(ρ̂, 1)

�
(ρ− ρ̂)

− 1

2
E��0 (ρ̂, 1)(ρ− ρ̂)

2. (41)

Let us define the following parameters V and W :

V � −E��0 (ρ̂, 1), W � R− E�0(ρ̂, 1). (42)

We have V ≥ 0 and in general V > 0. We also have W = 0

if ρ̂ ≤ 1. Beyond a critical rate, however, W �= 0.
We proceed further by replacing the exponent in the in-

tegrand of Eq. (40) by Eq. (41) and expanding the term
(ρ(1− ρ2))−1 into a sum of partial fractions. In the standard
saddlepoint approximation to the tail probability, which has
only a term ρ−1, this term is replaced by ρ̂−1, unless ρ̂
is close to zero, in which case the term ρ−1 is kept and
integrated over. By analogy, and taking into account that the
range of ρ is limited to (0, 1), we use the approximation
(1− ρ2) = (1 + ρ)(1− ρ) � (1 + ρ̂)(1− ρ), and decompose
the resulting fraction into a sum of simple fractions:

1

ρ(1− ρ2)
� 1

ρ(1 + ρ̂)
+

1

(1− ρ)(1 + ρ̂)
. (43)

Carrying out the integrals, we thus obtain our desired saddle-
point approximation

dtb(n, M) � αdtb(n, M) · e−n(Ê0(ρ̂,1)−ρ̂R) (44)

αdtb(n, M) =
1

2(1 + ρ̂)

�
erfcx1

�
ρ̂

�
nV

2
,W

�
n

2V

�
+

+ erfcx1

�
(1− ρ̂)

�
nV

2
,−W

�
n

2V

��
, (45)

where we used the function erfcx1(x, y) � erfcx(x −
y) exp(−y2) = erfc (x− y) exp(x2 − 2xy).

This analysis extends to the DT bound in Eq. (14). The
approximation is as in Eq. (45), with 1/(1 + ρ̂) replaced by
2−ρ̂, and with W = R−Ê�0(ρ̂, s)− 1

n log 2. An approximation
of the gain of the DT bound in Eq. (12) with respect to that
in Eq. (14) can be obtained from the respective saddlepoint
approximations. In particular, the gain can be approximated
as 2−ρ̂

1+ρ̂ which suggests a maximum gain of about 6%.

C. Approximation to the Feinstein Bound

Since Feinstein’s bound is expressed as a function of the tail
probability of the generalized information density is(X,Y ),
it is also amenable to the saddlepoint approximation. With the
approximation that the information density can be modeled as
a continuous random variable and substituting for the proper
cumulant transform, the steps we applied to approximation the
DT bound in the previous section give here

Pr

�
is(X,Y ) < log

M

γ

�
� α0 γ−ρ̂e−n(Ê0(ρ̂,s)−ρ̂R) (46)

α0 =
1

2
erfcx1

�
ρ̂

�
nV

2
,

√
nW√
2V

�
, (47)

where we have defined

ρ̂ = arg max
ρ≥0

Ê0(ρ, s)− ρR

1 + ρ
(48)

V � −Ê��0 (ρ̂, s) (49)

W � R− Ê�0(ρ̂, s)− 1

n
log γ. (50)

As for the value of γ, a good choice will turn out to be

γ �
�

ρ̂

2
erfcx

�
ρ̂

�
nV

2

�
e−n(E0(ρ̂,s)−ρ̂R)

� 1
1+ρ̂

, (51)

for which we have that

fb(n, M) � αfb(n, M) · e
−n(Ê0(ρ̂,s)−ρ̂R)

1+ρ (52)

αfb(n, M) =

�
ρ̂

2
erfcx

�
ρ̂

�
nV

2

�� 1
1+ρ̂

×

×



1 +

erfcx1

�
ρ̂
�

nV
2 ,

√
nW√
2V

�

ρ̂ erfcx

�
ρ̂
�

nV
2

�



 . (53)



As n → ∞ we have that − 1
n log γ → γ∗, where γ∗, whose

value is given in Eq. (33), was used to find of the exponent in
Sect. III-B. Both choices are therefore consistent. Moreover,
assuming that W � 0, we note that the approximation has
the form g(γ) � α0γ−ρ̂e−n(Ê0(ρ̂,s)−ρ̂R) + γ, for which the
optimum value of γ can be found by setting g�(γ) = 0 and
solving for γ. This gives the value of γ in Eq. (51), again
suggesting this is a good choice.

V. APPLICATIONS

In this section we apply the bounds and approximations to
the binary-input complex AWGN channel with signal-to-noise
ratio snr, whose corresponding Gallager function is given by

Ebpsk
0 (ρ, s) = − log E

��
1

2

�
1 + e

−4s(snr+
√

snrXZ)
��ρ�

,

(54)

where X ∈ {−1, 1} and Z ∼ N (0, 1).
Fig. 1 shows the values of the exponents for the various

bounds considered in this paper and Gallager’s exponent
(which is also the exponent of the Markov-RCU bound an-
alyzed in [2]). As expected, allowing for an optimum s leads
to a significant improvement in exponent, both between the
RCU and the DT bounds, and between the Feinstein bound
in Eq. (18) and the classical Feinstein bound. Somewhat
intriguingly, the improvement in exponent between the DT
bound and the generalized Feinstein bound is rather small.

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R

E
(R

)

 

 
Gallager, RCU
DT
Feinstein s = 1

1+ρ

Feinstein s = 1

Fig. 1. Exponents for the binary-input AWGN channel; snr = −2.823 dB.

Fig. 2 compares the proposed saddlepoint approximations
to the DT and Feinstein bounds with s = 1 and s =

1
1+ρ̂

and the RCU bound. For this channel, the bounds cannot
be computed exactly, and therefore, the corresponding sim-
ulations are reported. First, we observe an excellent match
between bounds and saddlepoint approximations. Overall, the
DT incurs a significant loss with respect to the RCU bound,
mainly due to the loss in error exponent; the RCU has
Gallager’s exponent since it uses s =

1
1+ρ̂ , while the DT has a

worse exponent due to using s = 1. Even though the Feinstein
bound exponent with s =

1
1+ρ̂ is close to that of the DT

bound, the error probability is significantly worse; obviously
the standard Feinstein bound performs the worst. Nonetheless,
all bounds are sufficient to show the achievability of the most
general expression for channel capacity [9].
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Fig. 2. Comparison of DT, Feinstein, and RCU bounds (simulation and
saddlepoint approximations) for n = 100 and a binary-input AWGN channel
with snr = −2.823 dB.

VI. CONCLUSIONS

In this paper, we have derived a new version of the
dependence-testing bound, and used it to find a family of
Feinstein-type bounds which improve on the usual formulation
of the Feinstein bound. We then computed the error expo-
nents and saddlepoint approximations to these bounds. These
saddlepoint approximations are a versatile tool that allow to
accurately calculate the corresponding bounds for arbitrary
discrete-input memoryless channels with a complexity similar
to that of the error exponent or the Gaussian approximation.
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