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Abstract—We derive a random-coding upper bound on the

average probability of error of joint source-channel coding

that recovers Csiszár’s error exponent when used with product

distributions over the channel inputs. Our proof technique for

the error probability analysis employs a code construction for

which source messages are assigned to subsets and codewords

are generated with a distribution that depends on the subset.

I. INTRODUCTION

We study the problem of transmitting a length-k discrete
memoryless source over a discrete memoryless channel using
length-n block codes. The source is distributed according to
PV (v) =

�
k

i=1 PV (vi), v = (v1, . . . , vk) ∈ Vk, where V is a
discrete alphabet with cardinality |V|. The channel law is given
by PY |X(y|x) =

�
n

i=1 PY |X(yi|xi), x = (x1, . . . , xn) ∈
Xn, y = (y1, . . . , yn) ∈ Yn, where X and Y are discrete
alphabets with cardinalities |X | and |Y|, respectively.

An encoder maps the length-k source message v to a length-
n codeword x(v), which is then transmitted over the channel.
We refer to the ratio t � k/n as the transmission rate. Based
on the length-n channel output y the decoder guesses which
source message was transmitted.

We say that an error exponent E > 0 is achievable if there
exists a sequence of codes of length n such that the average
error probability � (averaged over all source messages v) is
upper-bounded as

� ≤ e
−nE+o(n)

, (1)

where o(n) satisfies limn→∞ o(n)/n = 0. The error exponent
EJ of joint source-channel coding is defined as the supremum
of all achievable error exponents E.

Lower bounds on the error exponent are often derived by
drawing an ensemble of codebooks at random, and by then
analyzing the average error probability �̄, averaged over all
codebooks in the ensemble. This computation ensures the
existence of at least one codebook in the ensemble whose
average error probability � is at most �̄ [1, Sec. 5.5].
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In [1, Prob. 5.16], Gallager provides an upper bound on
�̄ using maximum a posteriori (MAP) decoding when the
codewords corresponding to different source messages are
drawn independently according to some distribution PX :

�̄ ≤ e
−E0(ρ,PY |X ,PX)+Es(ρ,PV )

, ρ ∈ [0, 1], (2)

where E0(ρ, PY |X , PX) denotes Gallager’s channel function

E0(ρ, PY |X , PX)

� − log
�

y

�
�

x

PX(x)PY |X(y|x)
1

1+ρ

�1+ρ

, (3)

and where Es(ρ, PV ) denotes Gallager’s source function

Es(ρ, PV ) � log

�
�

v

PV (v)
1

1+ρ

�1+ρ

. (4)

The upper bound (2) is derived using similar techniques as
Gallager’s channel coding bound [1, p. 135]. In the context
of discrete memoryless systems and for PX being a product
distribution PX(x) =

�
n

i=1 PX(xi), x ∈ Xn, it specializes
to

�̄ ≤ e
−n(E0(ρ,PY |X ,PX)−tEs(ρ,PV ))

. (5)

Thus, for a fixed t, the probability of error �̄ vanishes exponen-
tially in n with the error exponent given by E0(ρ, PY |X , PX)−
tEs(ρ, PV ). By minimizing (5) over PX and ρ, we obtain the
following lower bound on the error exponent EJ :

EJ ≥ E
G
J � max

ρ∈[0,1]

�
E0(ρ, PY |X)− tEs(ρ, PV )

�
, (6)

where we define E0(ρ, PY |X) � maxPX E0(ρ, PY |X , PX).
Csiszár refined this result using the method of types [2].

Csiszár’s approach is different from Gallager’s in several
ways. Firstly, Csiszár considers fixed composition codes rather
than codes that are generated by product distributions – such
codes are constructed by mapping messages within a source
type onto sequences within a channel-input type. Secondly, a
suboptimal maximum mutual information decoder is used at
the receiver. This decoder first decides on the source type that
is being transmitted and then on the source message within the



type. Csiszár’s code construction yields the following lower
bound on the error exponent:

EJ ≥ E
Cs
J

� min
tH(V )≤R≤t log|V|

�
te

�
R

t
, PV

�
+ Er(R,PY |X)

�
, (7)

where e(R,PV ), referred to as the source reliability function
[3]–[5], is given by

e(R,PV ) � min
Q:H(Q)≥R

D(PQ�PV ) (8)

= sup
ρ≥0

�
ρR− Es(ρ, PV )

�
, (9)

with D(·�·) denoting the divergence, and with Er(R,PY |X)
denoting the random-coding channel exponent [1]

Er(R,PY |X) � max
ρ∈[0,1]

�
E0(ρ, PY |X)− ρR

�
. (10)

A lower bound on the error probability of the best code
induces an upper bound on EJ. One such upper bound is given
by the sphere-packing expoment [2, Lemma 2]

EJ ≤ min
tH(V )≤R≤t log|V|

�
te

�
R

t
, PV

�
+ Esp(R,PY |X)

�
. (11)

It can be checked that EJ = E
Cs
J when the minimum on the

right-hand side (RHS) of (11) is attained for a value of R such
that Esp(R,PY |X) = Er(R,PY |X). This holds for values of
R above the critical rate of the channel [1].

In order to obtain a clearer comparison between (6) and (7),
Zhong et al. [6] provide a compact formulation of Csiszár’s
result. Specifically, the authors invoke the Fenchel duality
theorem [7, Thm. 31.1] to rewrite (7) as

E
Cs
J = max

ρ∈[0,1]

�
Ē0(ρ, PY |X)− tEs(ρ, PV )

�
, (12)

where Ē0(ρ, PY |X) denotes the concave-hull of E0(ρ, PY |X),
defined as the pointwise infimum over the family of affine
functions that upper-bound E0(ρ, PY |X) as a function of ρ ∈
[0, 1] [7, Cor. 12.1.1]. It follows from (12) that E

Cs
J ≥ E

G
J ,

with the inequality possibly being strict.
In cases where the above inequality is strict, the difference

between E
Cs
J and E

G
J is typically small [6]. The methods used

to derive each exponent are conceptually different, raising a
number of questions. In this paper, we address the question
of whether fixed composition codes are necessary in order to
achieve Csiszár’s exponent. We show that random codes gen-
erated by product distributions together with MAP decoding
and bounding techniques based on Markov’s inequality can be
used to recover Csiszár’s exponent, answering the question in
the negative.

II. MAIN RESULTS

The derivation of the main results involves the following
steps:

1) Define a partition Pk of the message set Vk into Nk

disjoint subsets A1, . . . ,ANk satisfying
�

Nk

i=1 Ai = Vk.
We shall refer to these subsets as classes.

2) Assign a channel input distribution P
(i)
X to each class

Ai. Then, for each source message v ∈ Ai randomly
and independently generate codewords x(v) ∈ Xn

according to P
(i)
X .

3) Upper-bound the probability of error using MAP decod-
ing and Gallager’s bounding techniques [1].

For i = 1, . . . , Nk we define

E
(i)
s (ρ, PV ) � log

�
�

v∈Ai

PV (v)
1

1+ρ

�1+ρ

. (13)

Theorem 1: For every partition Pk, for every set of channel-
input distributions P

(1)
X , . . . , P

(Nk)
X , and for every set of

parameters ρ1, . . . , ρNk ∈ [0, 1], the random-coding error
probability is upper-bounded by

�̄ ≤ h(k)
Nk�

i=1

exp

�
−E0

�
ρi, PY |X , P

(i)
X

�

+E
(i)
s (ρi, PV )

�
, (14)

where

h(k) � 2Nk(k + 1)|V|(k/t+ 1)|X ||Y|
. (15)

Proof: See Section III-A.
The bound (14) can be optimized over product distributions

P
(i)
X (x) =

�
n

j=1 P
(i)
X

(xj), x ∈ Xn, and parameters ρi ∈ [0, 1]
for i = 1, . . . , Nk to obtain

�̄ ≤ �̄B(Pk) (16)

� h(k)
Nk�

i=1

exp

�
− max

ρi∈[0,1]

�
nE0

�
ρi, PY |X

�

−E
(i)
s (ρi, PV )

��
. (17)

If the partition Pk only has one class, i.e., A1 = Vk for
k = 1, 2, . . ., the upper bound (16) recovers Gallager’s bound
on the error exponent (6):

lim
n→∞

− 1

n
log �̄B(Pk) ≥ E

G
J . (18)

As we shall see next, with a more judicious choice of Pk

the upper bound (16) also recovers Csiszár’s lower bound on
the error exponent (7).

Specifically, (7) can be achieved by identifying the classes
A1, . . . ,ANk with the source-type classes T1, . . . , TNk . A
source-type class Ti is defined as the set of all source messages
v ∈ Vk with type Pi [3, Def. 2.1]. Thus, for a given
distribution Pi on V , the source-type class Ti is the set of
all source messages v ∈ Vk satisfying

Pi(a) =
1

k
N(a|v), a ∈ V, (19)

where N(a|v) denotes the number of occurrences of a ∈ V
in v.



Corollary 1: Let the classes A1, . . . ,ANk of the partition
Pk be the source-type classes T1, . . . , TNk . Then

lim inf
n→∞

− 1

n
log �̄B(Pk) ≥ E

Cs
J . (20)

Proof: See Section III-B.
By the type counting lemma [3, Lemma 2.2], there are at

most (k+1)|V| different source-type classes. Thus, Corollary 1
demonstrates that partitions Pk with not more than (k+1)|V|

classes are sufficient to achieve Csiszár’s error exponent. In
fact, we have recently showed that Csiszár’s error exponent
can already be achieved with partitions Pk consisting of two
classes [8].

III. PROOFS

A. Proof of Theorem 1

The random-coding error probability �̄ is upper-bounded by
the random-coding union (RCU) bound [9], [10]

�̄ ≤
Nk�

i

�̄(i), (21)

where

�̄(i) �
�

v∈Ai

PV (v)
�

x,y

P
(i)
X (x)PY |X(y|x)

×min





1,

Nk�

j=1

�

v̄∈Aj

�

x̄:PV (v̄)PY |X(y|x̄)
≥PV (v)PY |X(y|x)

P
(j)
X (x̄)





. (22)

Let {T1, . . . , TMk} be the set of all source-type classes in
Vk. Furthermore, let {T1(y), . . . , TMn(y)} be the set of all
V-shells of y in Xn, where the V-shell Tm(y) is defined as
the set of all channel inputs x ∈ Xn with conditional type
Vm given y ∈ Yn [3, Def. 2.4]. Thus, for a given conditional
type Vm given y ∈ Yn, the V-shell Tm(y) is the set of all
channel inputs x ∈ Xn satisfying

N(a, b|x,y) = N(b|y)Vm(a|b), a ∈ X , b ∈ Y, (23)

where N(a, b|x,y) denotes the number of occurrences of
(a, b) ∈ X × Y in (x,y). Note that, by the type counting
lemma,

Mk ≤ (k + 1)|V| and Mn ≤ (n+ 1)|X ||Y|
. (24)

Using the above definitions, we can rewrite (22) as

�̄(i)

=
�

y

Mk�

�=1

Mn�

m=1

�

v∈T�∩Ai

�

x∈Tm(y)

P
(i)
X (x)PV (v)PY |X(y|x)

×min





1,

Nk�

j=1

�

v̄∈Aj

�

x̄:PV (v̄)PY |X(y|x̄)
≥PV (v)PY |X(y|x)

P
(j)
X (x̄)





. (25)

It is easy to show that PV (·) is constant within every source-
type class T� and that PY |X(y|·) is constant within every V-
shell Tm(y) of y. This allows us to define the metric

d(y, �,m) � PV (v)PY |X(y|x), (v,x) ∈ T�×Tm(y) (26)

for every y ∈ Yn and � = 1, . . . ,Mk, m = 1, . . . ,Mn. We
further define

Gj(y, a) �
�

v∈Aj

�

x:PV (v)PY |X(y|x)≥a

P
(j)
X (x). (27)

Using (26) and (27) in (25) yields

�̄(i) =
�

y

Mk�

�=1

Mn�

m=1

d(y, �,m)min

�
1,

Nk�

j=1

Gj

�
y, d(y, �,m)

�
�

×
�

v∈T�∩Ai

�

x∈Tm(y)

P
(i)
X (x). (28)

We now focus on the last double sum term in (28), which can
be upper-bounded as

�

v∈T�∩Ai

�

x∈Tm(y)

P
(i)
X (x)

≤
�

v∈T�∩Ai

�

x:PV (v)PY |X(y|x)
=d(y,�,m)

P
(i)
X (x) (29)

≤
�

v∈Ai

�

x:PV (v)PY |X(y|x)
≥d(y,�,m)

P
(i)
X (x) (30)

= Gi

�
y, d(y, �,m)

�
(31)

for every y ∈ Yn and � = 1, . . .Mk, m = 1, . . . ,Mn. Here
(29) follows from the fact that not every x satisfying

PV (v)PY |X(y|x) = d(y, �,m), v ∈ T� (32)

must be in Tm(y), and (30) follows from summing over the
entire message set Ai and a larger codeword set. Combining
(31) with (28) and (21) yields

�̄ ≤
Nk�

i=1

�

y

Mk�

�=1

Mn�

m=1

d(y, �,m)

×min

�
1,

Nk�

j=1

Gj

�
y, d(y, �,m)

�
�
Gi

�
y, d(y, �,m)

�
(33)

≤
Nk�

i=1

Nk�

j=1

�

y

Mk�

�=1

Mn�

m=1

d(y, �,m)

×min

�
1, Gj

�
y, d(y, �,m)

�
�
Gi

�
y, d(y, �,m)

�
(34)

≤
Nk�

i=1

Nk�

j=1

�

y

Mk�

�=1

Mn�

m=1

d(y, �,m)

×
�
min

�
1, Gj

�
y, d(y, �,m)

��
Gj

�
y, d(y, �,m)

�

+min
�
1, Gi

�
y, d(y, �,m)

��
Gi

�
y, d(y, �,m)

��
, (35)



where in (34) we have used the inequality min{1, x + y} ≤
min{1, x}+min{1, y}, x, y ≥ 0, and in (35) we have used the
inequality min{1, x}y ≤ min{1, x}x+min{1, y}y, x, y ≥ 0.
By rearranging the terms in (35), we obtain

�̄ ≤ 2Nk

Nk�

i=1

�

y

Mk�

�=1

Mn�

m=1

d(y, �,m)

×min
�
1, Gi

�
y, d(y, �,m)

��
Gi

�
y, d(y, �,m)

�
. (36)

We next use Markov’s inequality to upper-bound

Gi(y, a) =
�

v̄∈Ai

�

x̄:
�
PV (v̄)PY |X(y|x̄)

�si≥a
si

P
(i)
X (x̄) (37)

≤
�

v̄∈Ai

�

x̄

P
(i)
X (x̄)

�
PV (v̄)PY |X(y|x̄)

a

�si

, (38)

for a, si > 0. Using that min{1, x} ≤ x
ρi for x ≥ 0 and

ρi ∈ [0, 1], and choosing si =
1

1+ρi
in (38), we obtain

min
�
1, Gi(y, a)

�
Gi(y, a)

≤
�
Gi(y, a)

�1+ρi (39)

≤
�

�

v̄∈Ai

�

x̄

P
(i)
X (x̄)

�
PV (v̄)PY |X(y|x̄)

a

� 1
1+ρi

�1+ρi

. (40)

By applying (40) with a = d(y, �,m) to (36), we finally
obtain

�̄ ≤ 2NkMkMn

Nk�

i=1

�

y

�
�

x

P
(i)
X (x)PY |X(y|x)

1
1+ρi

�1+ρi

×
�

�

v∈Ai

PV (v)
1

1+ρi

�1+ρi

(41)

= 2NkMkMn

Nk�

i=1

e
−E0

�
ρi,PY |X ,P

(i)
X

�
+E

(i)
s (ρi,PV )

. (42)

Theorem 1 follows then by upper-bounding Mk and Mn using
(24).

B. Proof of Corollary 1

Let the classes A1, . . . ,ANk of the partition Pk be the
source-type classes T1, . . . , TNk . We first note that, by the type
counting lemma,

Nk ≤ (k + 1)|V|
. (43)

Furthermore, E(i)
s (ρ, PV ), i = 1, . . . , Nk, can be rewritten as

E
(i)
s (ρ, PV ) = ρi log |Ti|+ log

�
�

v∈Ti

PV (v)

�
, (44)

since PV (·) is constant within each source-type class Ai = Ti.
Let Vi be a random variable whose distribution is the type

Pi associated with Ti. Then, if we define Ri � tH(Vi) (where

H(Vi) denotes the entropy of Vi), we have the following
inequalities [3, Lemmas 2.3 & 2.6]:

log |Ti|
n

≤ Ri, (45)

log

�
�

v∈Ti

PV (v)

�
≤ −kD (Pi�PV ) (46)

≤ −k min
j=1,...,Nk:

H(Vj)≥H(Vi)

D (Pj�PV ) (47)

≤ −ke

�
Ri

t
, PV

�
, (48)

where in (48) we have used the definitions of Ri and of the
source reliability function (8).

Using (44)–(48), and using that t = k/n, we can upper-
bound (17) as

�̄B(Pk)

≤ h(k)
Nk�

i=1

e

−n

�
max

ρi∈[0,1]
{E0(ρi,PY |X)−ρiRi}+te(Ri

t ,PV )
�

(49)

= h(k)
Nk�

i=1

e
−n

�
Er(Ri,PY |X)+te(Ri

t ,PV )
�

(50)

≤ h(k)Nke
−n min

0<R≤t log|V|
{Er(R,PY |X)+te(R

t ,PV )}
, (51)

where in (50) we have used the definition of the random-
coding channel exponent (10), and where (51) follows from
minimizing the exponent over all possible values of Ri.

Using the definition of h(k) in (14) and the bound (43), we
have that

h(k)Nk ≤ (k + 1)3|V|(k/t+ 1)|X ||Y|
, (52)

which is polynomial in k. Hence, (51) yields

lim inf
n→∞

− 1

n
log �̄B(Pk)

≥ min
0<R≤t log|V|

�
Er

�
R,PY |X

�
+ te

�
R

t
, PV

��
. (53)

Since Er
�
R,PY |X

�
+ te (R/t, PV ) is a decreasing function

of R for 0 < R ≤ tH(V ), it follows that the RHS of (53) is
equal to the RHS of (7), thus proving Corollary 1.

IV. EXTENSION TO GENERAL ALPHABETS

One of the strengths of Gallager’s error bound (2) is that
it can be easily generalized to nondiscrete channels without
resorting to limiting arguments applied to ever-finer quantiza-
tions of X and Y .

While in the derivation of our new bound we mostly used
the same techniques as Gallager, there are some steps that
rely on the method of types. In particular, to analyze (22), we
partitioned Vk into source-type classes and Xn into V-shells of
y ∈ Yn. Nevertheless, these partitions were merely introduced
to simplify the analysis and are not essential. Indeed, Csiszár’s



error exponent can also be obtained by partitioning Vk ×Xn

into κ+ 1 sets of the form

S�(y) =
�
(v,x) ∈ Vk ×Xn : PV (v)PY |X(y|x) ∈ [α�, β�)

�

(54)

for every y ∈ Yn, where κ is a linear function of n, and where
α0 = 0, α� = e

−nγ
e
�−1, � = 1, . . . , κ, and β� = e

−nγ
e
�,

� = 0, . . . , κ− 1, βκ = ∞ for some γ > 0.
Following the arguments in Sections III-A while treating S0

and Sκ separately we obtain the upper bound

�̄ ≤ 2Nkκe

Nk�

i=1

e

− max
ρi∈[0,1]

�
E0

�
ρi,PY |X ,P

(i)
X

�
−E

(i)
s (ρi,PV )

�

+Nk

Nk�

i=1

Pr
�
PV (V )PY |X

�
Y |Xi

�
< e

−nγ

�

+Nk

Nk�

i=1

Pr
�
PV (V )PY |X

�
Y |Xi

�
≥ e

−nγ+κ−1
�
, (55)

where Xi is a random variable with distribution P
(i)
X , for

i = 1, . . . , Nk. By judiciously choosing γ and κ, and by max-
imizing (55) over product distributions, we recover Csiszár’s
error exponent.

A lower bound on EJ for nondiscrete channels follows
along the same lines by replacing the channel law PY |X in
(54) with the corresponding Radon-Nikodym derivative fY |X .

V. CONCLUDING REMARKS

We have presented an upper bound on the random-coding
error probability for joint source-channel coding that recovers
Gallager’s and Csiszár’s lower bounds on the error exponent
for discrete memoryless systems. Thus, the new expression
gives the actual error exponent at least in the cases where
Csiszár’s exponent is tight.

The method to obtain the new bound uses a specific random-
coding construction with MAP decoding. Specifically, we
partition the message set into disjoints classes and assign
to each class an input distribution according to which the
codewords are randomly generated.

By partitioning the message set into source-type classes, and
by choosing for each class the input distribution to be a product
distribution, the new bound on the error probability recovers
Csiszár’s lower bound on the error exponent, answering the
question of whether fixed composition codes are required to
achieve Csiszár’s exponent in the negative.
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