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Abstract— Mismatched decoding theory is applied to study
the error exponents (both random-coding and expurgated) and
achievable rates for bit-interleaved coded modulation (BICM).
The gains achieved by constant-composition codes with respect
to the the usual random codes are highlighted.

I. INTRODUCTION

Random-coding techniques are typically used to prove chan-
nel coding theorems for achievable rates and exponents under
maximum-likelihood (ML) and maximum-metric mismatched
decoding [1]–[5]. For these problems, different random-coding
ensembles, where codewords are generated in an i.i.d. manner,
have been considered in the literature. Depending on the
specific form of the distribution, we may distinguish between
the i.i.d. ensemble, the constant-composition ensemble and
the cost-constrained ensemble [1]–[6]. The i.i.d. ensemble can
be used to prove the achievability of the generalized mutual
information (GMI) [2], whereas the latter two can be used to
prove the achievability of the higher LM rate [1], [4].

A particularly relevant instance of mismatched decoding
is bit-interleaved coded modulation (BICM), introduced by
Zehavi [7] as a pragmatic coding scheme for combining coding
and modulation to achieve high spectral efficiency. BICM has
been extensively studied in terms of its achievable rate in [8]–
[13]. In particular, its GMI has been considered, and it has
been shown that the input probabilities may be optimized to
close the gap that made the BICM information rate suboptimal
compared to coded modulation (CM) in the AWGN channel
[11]–[13]. However, the LM rate and error exponent of BICM
have not yet been considered in the literature. In this paper,
we study the LM rate and error exponents for BICM for the
constant-composition (or cost-constrained) ensemble.

II. PRELIMINARIES

A. System Setup
We consider discrete-time transmission of information with

a block code M of length N and rate R, where R =
1
N log |M| nats per channel use. At the encoder, a message m
drawn equiprobably from the set {1, . . . , |M|} is mapped to a
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codeword x(m) =
�
x1(m), . . . , xN (m)

�
, where xk(m) ∈ X ,

and X is the channel input alphabet. We consider a continuous-
output alphabet Y such that the output y ∈ YN is character-
ized by the probability density PY|X(y|x). We assume a mem-
oryless channel, therefore PY|X(y|x) =

�N
k=1 PY |X(yk|xk).

The decoder decides on the estimate of the message m̂
according to a decoding metric q(x,y),

m̂ = argmax
m

q(x(m),y) = argmax
m

N�

k=1

q(xk(m), yk), (1)

where q(x, y) is the symbol decoding metric. When q(x,y)
is a strictly increasing bijective function of PY|X(y|x), the
decoder will always select the ML codeword. Otherwise, we
have a mismatched decoder [1]–[5].

We let Pe denote the average error probability of the code
M under this metric. A rate R is said achievable if, for every
� > 0 and for N sufficiently large, there exists an encoder and
decoder pair such that 1

N log |M| ≥ R−� and Pe ≤ �. An error
exponent Er(R) is said achievable if there exists a code of
length N with rate R such that limN→∞ − 1

N logPe ≥ Er(R).
For BICM, the codewords are obtained as the serial concate-

nation of a binary encoder C of length n = mN , a bit-level
interleaver, and a binary labeling function µ : {0, 1}m → X
which takes blocks of m bits and maps them to signal constel-
lation symbols x, such that xk = µ

�
b(k−1)m+1, . . . , bkm

�
, k =

1, . . . , N . This interleaver can be safely ignored in our analysis
as it has been absorbed in the description of the random coding
ensemble. We let M � |X | denote the cardinality of X so
that m = log2 M . We denote the inverse labeling function
by bj : X → {0, 1}, so that bj(x) is the j-th bit in the
binary label of modulation symbol x, for j ∈ [1,m]. With a
slight abuse of notation, we let Bj and bj denote the random
variables and their corresponding realizations of the bits in
a given label position j. In this paper, we consider the case
where the modulation symbols x are used with probabilities

P bicm
X (x) =

m�

j=1

PBj

�
bj(x)

�
, (2)

where PBj (b) is the probability of the j-th bit being equal to
b. We denote the conditional probability of symbols given that
bit Bj in the j-th position of the label is b by PX|Bj

(x|b). By



construction, PX|Bj
(x|b) is zero if bj(x) �= b.

The BICM decoder treats each of the m bits in a symbol
as independent, yielding [10]

q(x, y) =
m�

j=1

qj(bj(x), y), (3)

where the jth bit decoding metric qj(b, y) is given by

qj(b, y) =
�

x�∈X̂

PY |X(y|x�)QX|Bj
(x�|b). (4)

Here, X̂ and QX|Bj
(x|b) respectively denote the reference

constellation and the conditional symbol probabilities used for
decoding, not necessarily those used at the transmitter, namely
X and PX|Bj

(x|b). Mapping is also considered on X̂ . We
denote the reference inverse labeling function at the decoder
by b̂j : X̂ → {0, 1}. For the cases we considered in this paper,
QX|Bj

(x|b) is non-zero only when b̂j(x) = b. The mapping
is kept the same at both transmitter and receiver.

B. Random-coding Ensembles

In the mismatched-decoding analysis, it has proved conve-
nient to use random coding ensembles where codewords are
generated in an i.i.d. manner. Depending on the specific form
of the distribution, we have the following three ensembles.

The i.i.d. ensemble: each codeword in the ensemble is
composed of symbols generated i.i.d. according to, i.e.,

PX(x) =
N�

k=1

PX(xk). (5)

The cost-constrained ensemble: each codeword satisfies a
given pseudo-cost constraint, Nā − δ < a(x) ≤ Nā, where
a(x) =

�N
k=1 a(xk), a : X → R, is the pseudo-cost function,

ā = E[a(X)], and the constant δ > 0 limits the shell
on which codewords lie. Let X be an i.i.d. random vector
with distribution P̃X satisfying the pseudo-cost constraint. The
codebook is constructed by [14]

P̃X(x) = ζ−111{Nā− δ < a(x) ≤ Nā}PX(x), (6)

where ζ is a normalization constant and PX(x) is the i.i.d.
distribution in (5). The pseudo-cost improves the performance
of the random-coding ensemble [5], [15].

The constant-composition ensemble: each codeword is se-
lected according to the distribution

P̃X(x) = |T (PN )|−111{x ∈ T (PN )}, (7)

where PN is the most probable type under PX(x). Codewords
have the same empirical distribution since they are generated
uniformly over the type class T (PN ). The type class T (P ) is
defined as the set T (P ) = {x ∈ XN : Px = P}, where the
type Px of x is the relative proportion of occurrence of each
symbol of X , i.e. its empirical distribution [16].

The i.i.d. and cost-constrained ensembles apply to both
discrete and continuous alphabets, whereas the constant-
composition ensemble is only valid for discrete inputs.

C. Achievable Rates

The authors in [2], [5] have proved the achievability of the
GMI using the i.i.d. ensemble. The GMI has also been proved
to be the largest achievable rate for the i.i.d. ensemble. The
GMI for a given input distribution PX is given by

I0(PX) � sup
s≥0

E
�
log

q(X,Y )s�
x� PX(x�)q(x�, Y )s

�
. (8)

The cost-constrained ensemble and constant-composition en-
semble are used to prove a higher achievable rate. This rate is
known as the LM rate, and is given by [1], [16]

I1(PX) � sup
s≥0,a(·)

E
�
log

q(X,Y )sea(X)

�
x� PX(x�)q(x�, Y )sea(x�)

�
. (9)

The LM rate is also the largest achievable rate for the constant-
composition [3] and cost-constrained ensembles with discrete
alphabets [6]. Since the GMI can be recovered from the LM
rate by choosing a(x) = 0 for x ∈ X , we have that

I0(PX) ≤ I1(PX). (10)

D. Error Exponents

We denote the random-coding error exponents at rate R
for the ensembles defined in (5)–(6) by Er,0(R) and Er,1(R)
respectively. They are given by given by [6]

Er,0(R) � sup
0≤ρ≤1
s≥0

E0(ρ, s)− ρR (11)

Er,1(R) � sup
0≤ρ≤1

s≥0,r,r̄,a(·)

E1

�
ρ, s, r, r̄, a(·)

�
− ρR, (12)

where the functions E0 and E1 are respectively given by

E0(ρ, s) � − logE
��

�

x�

PX(x�)
q(x�, Y )s

q(X,Y )s

�ρ�
(13)

E1

�
ρ, s, r, r̄, a(·)

�
�

− logE
�
era(X)

erā

�
�

x�

PX(x�)
q(x�, Y )ser̄a(x

�)

q(X,Y )ser̄ā

�ρ�
. (14)

For discrete memoryless channels, both exponents are tight for
the respective code ensembles under consideration [6]. The
exponent Er,1(R) in (12) is a refinement of the following
exponent with cost constraint by Shamai and Sason [15]

Er,1�(R) � sup
0≤ρ≤1
s≥0,a(·)

E1�
�
ρ, s, a(·)

�
− ρR, (15)

where

E1�
�
ρ, s, a(·)

�
� − logE

��
�

x�

PX(x�)
q(x�, Y )sea(x

�)

q(X,Y )sea(X)

�ρ�

(16)
= E1

�
ρ, s,−ρ, 1, a(·)

�
. (17)

Thus, Er,1�(R) ≤ Er,1(R) always holds. The GMI and LM



rates can be recovered from the exponents as

I0(PX) = sup
0≤ρ≤1,s≥0

E0(·)
ρ

=
d sups≥0 E0(·)

dρ

����
ρ=0

(18)

I1(PX) = sup
s≥0,a(·)
0≤ρ≤1

E1�(·)
ρ

= sup
0≤ρ≤1
s≥0,a(·)

E1(·)
ρ

����r=−ρ
r̄=1

(19)

=
d sups≥0,a(·) E1�(·)

dρ

����
ρ=0

=
d sups≥0,a(·) E1(·)

dρ

����r=−ρ
r̄=1
ρ=0

.

(20)

The exponent Er,0(R) is usually called the GMI exponent. We
also have the following properties for the above exponents.

Proposition 2.1: For a fixed input distribution, s ≥ 0, ρ ∈
[0, 1], r, r̄ and a(x) for x ∈ X ,

1) E0(ρ, s), is concave in s and in ρ.
2) E1�

�
ρ, s, a(·)

�
is jointly concave in s and a(x), and is

a concave function of ρ.
3) E1

�
ρ, s, r, r̄, a(·)

�
is jointly concave in s and a(x),

jointly concave in s, r and r̄, and concave in ρ.
Proof: The proposition can be simply proved by using

the Hölder’s inequality with the definition of concavity.
In [6], the authors have introduced the cost-constrained

ensemble with L constraints to improve on Er,1(R). For a
distribution of the cost-constrained codewords given by

P̃X(x) =
11 {Nāk − δk < ak(x) ≤ Nāk, k = 1, . . . , L}PX(x)

ζ

≤ ζ−1PX(x)e
�L

k=1 rk(ak(x)−Nāk+δk), (21)

they use the fact that ζ decays polynomially in N to show
that the corresponding error exponent is given by

Er,L(R) � sup
0≤ρ≤1,s≥0

{rk},{r̄k},{ak(·)}

EL

�
ρ, s, {rk}, {r̄k}, {ak(·)}

�
−ρR,

(22)
where

EL

�
ρ, s, {rk}, {r̄k}, {ak(·)}

�
�

− logE








E
�
q(X �, Y )se

�L
k=1 r̄k(ak(X

�)−āk)|Y
�

q(X,Y )se−
�L

k=1
rk
ρ (ak(X)−āk)





ρ

 ,

(23)

āk = E[ak(X)], {ak(·)} denotes {a1(·), . . . , aL(·)}, and
similarly for {rk} and {r̄k}. The authors in [6] have shown
that the L cost-constrained ensemble contains the constant-
composition ensemble as a special case, and that the constant-
composition ensemble exponent can be recovered using the
cost-constrained ensemble with at most two cost constraints.

A known drawback of the random-coding ensembles de-
scribed above is that at low rates they suffer from the effect of
some exceedingly bad codes having two or more code vectors
which are identical. Expurgation often is used to mitigate this
effect and to improve the bound at low rates. By following
similar steps to those used by Gallager [14, Section 5.7], we
can derive mismatched-decoding expurgated exponents for the

i.i.d. and the L-cost-constrained ensembles, as summarized in
the following theorem.

Theorem 2.1: For an arbitrary memoryless channel, there
exist codes from the expurgated cost-constrained random
coding ensemble with length N , rate R and pseudo-cost
function ak(·) with k = 1, . . . , L for which, for a given input
distribution PX and all messages

Pe ≤ e
−NEx

r,L

�
R+ 1

N log 4
ζ2

e
�L

k=1 δk(rk+r̄k)
�

, (24)

where the function Ex
r,L(·) is given by

Ex
r,L(R) � sup

s≥0,ρ≥1,
{rk},{r̄k},{ak(·)}

Ex
L

�
ρ, s, {rk}, {r̄k}, {ak(·)}

�
− ρR

(25)

Ex
L

�
ρ, s, {rk}, {r̄k}, {ak(·)}

�
� −ρ log

�

x

�

x�

PX(x)

· PX(x�)
e
�L

k=1 rkak(x)−rkāk

e−
�L

k=1 r̄kak(x)−r̄kāk

�
EPY |X=x

�
q(x�, Y )s

q(x, Y )s

�� 1
ρ

.

(26)

The corresponding result for the i.i.d. ensemble can be ob-
tained by setting δk = 0, ζ = 1, ak(·) = 0 in Ex

r,L(R). Hence

Ex
r,0(R) � sup

s≥0,ρ≥1
Ex

0 (ρ, s)− ρR (27)

Ex
0 (ρ, s) � −ρ logE

��
E
�
q(X �, Y )s

q(X,Y )s

����X,X �
�� 1

ρ

�
, (28)

where the triplet of random variables (X,X �, Y ) are dis-
tributed according to PX(x)PX(x�)PY |X(y|x).

We have that
Ex

r,L(R) ≥ Ex
r,0(R). (29)

Theorem 2.2: At R → 0, the expurgated exponents satisfy

lim
R→0

Ex
r,0(R) = lim

R→0
Ex

r,L(R)

= sup
s≥0

−E
�
log

�
E
�
q(X �, Y )s

q(X,Y )s

����X,X �
���

.

(30)

Proof: It is not difficult to see that

lim
R→0

Ex
r,0(R) = sup

s≥0,ρ≥1
Ex

0 (ρ, s) (31)

lim
R→0

Ex
r,L(R) = sup

s≥0,ρ≥1,
{rk},{r̄k},{ak(·)}

Ex
L

�
ρ, s, {rk}, {r̄k}, {ak(·)}

�
.

(32)

According to [14, Appendix 5B], Ex
0 (ρ, s) for fixed s is a non-

decreasing concave function of ρ for ρ ≥ 0. Hence the supre-
mum of Ex

0 (ρ, s) for fixed s over ρ ≥ 1 is achieved at ρ → ∞.
Evaluating this limit by L’Hôpital’s rule, we obtained the
desired expression in (30). For Ex

L

�
ρ, s, {rk}, {r̄k}, {ak(·)}

�
,

we apply a change of variables for the L-cost case and have



that

sup
s≥0,ρ≥1,{rk},{r̄k},{ak(·)}

Ex
L

�
ρ, s, {rk}, {r̄k}, {ak(·)}

�

= sup
s≥0,ρ≥1,{r�k},{r̄

�
k},{ak(·)}

GL

�
ρ, s, {r�k}, {r̄�k}, {ak(·)}

�
,

(33)

where the function GL is obtained from (26) as

GL

�
ρ, s, {r�k},{r̄�k}, {ak(·)}

�
�

= Ex
L

�
ρ, s,

�r�k
ρ

�
,
� r̄�k
ρ

�
, {ak(·)}

�
. (34)

The function GL is a nondecreasing concave function of ρ for
ρ ≥ 0 and fixed s. Therefore, (33) can be evaluated similarly
using L’Hôpital’s rule.

III. BICM RATES AND EXPONENTS IN THE GAUSSIAN
CHANNEL

In this section, we evaluate the achievable rates when the
input probabilities are optimized and error exponents for the
BICM transmission over the AWGN channel for which

yk =
√
snrxk + zk k = 1, . . . , N, (35)

where zk are realizations of an i.i.d. Gaussian random variable
with zero mean and unit variance, and snr is the average
signal-to-noise ratio (SNR). Codewords are subject to a power
constraint N−1

�N
k=1 |xk|2 = 1.

We are interested in solving the following problem

Cbicm
k = sup

Pbicm
X :E

Pbicm
X

[|X|2]≤1

Ibicmk (P bicm
X ), k = 0, 1 (36)

where Ibicmk (P bicm
X ), k = 0, 1 is obtained by substituting the

BICM decoding metric in (3) and (4) into the GMI or LM
rate expression in (8) and (9). Moreover, the channel input
distribution P bicm

X satisfies (2).
Table I shows the schemes of interest. X is the constellation

used at the transmitter, and we have
�

x∈X̄ M−1|x|2 = 1. In
short, BICM1 is the classical BICM in [8] with equiproba-
ble symbols. When the input probabilities are optimized for
BICM1, we get the optimized BICM scheme in [11], [12].
In BICM2 and BICM3, both mismatched receivers assume
equiprobable QX|Bj

(x|b). The difference between them is that
the reference constellation at the receiver X̂ = X for BICM3,
while for BICM2 X̂ is normalized. Note that BICM2 and
BICM3 are the same only when equiprobable inputs are used.

Fig. 1 shows the rates for the schemes in Table I when the

TABLE I
BICM SCHEMES OF INTEREST

Schemes X̂ QX|Bj
(x|b)

BICM1 X PX|Bj
(x|b) = Pbicm

X (x)
PBj (b)

11
�
b̂j(x) = b

�

BICM2 X̄ 2
M 11

�
b̂j(x) = b

�

BICM3 X 2
M 11

�
b̂j(x) = b

�
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Fig. 1. Comparison of Cbicm
1 and Cbicm

0 among different BICM schemes
with 8PAM modulation and Gray labeling. Schemes are shown as in Table I.

input probabilities are optimized. The LM rate has virtually no
improvement over the GMI for BICM1 with equiprobable in-
puts and BICM3 with optimized P bicm

X (x) over all SNR rage.
However, for BICM2 with optimized P bicm

X (x), at moderate
SNRs the LM rate improves by as much as the equivalent of
0.5 dB (the decoder in BICM2 is the most mismatched among
the schemes in Table I).

In Fig. 2, we plot the three exponents for BICM1 with
equiprobable channel inputs for snr = 5 dB. The exponents of
CM transmission are also shown for reference. The markers on
the x axis show I(PX), Ibicm0 (P bicm

X ) and Ibicm1 (P bicm
X ). We

also see that though the LM rate improves on the GMI only
marginally, the change in exponents Er,1(R) and Er,1�(R) is
more pronounced. Similar to the observation by Scarlett [6],
the exponent Er,1(R) improves over the exponent Er,1�(R).

In Fig. 3, we show the error exponents of BICM 8PAM
transmission for snr = 5dB. We observe an improvement
of Er,L(R) (L = 2) over Er,1(R). The BICM scheme we
simulated in this example has the decoding metric calculated
from the following conditional symbol probability,

QX|Bj
(x|b) = P bicm

X (x)

PBj (b̄)
11
�
b̂j(x) = b

�
, (37)

where b̄ denotes the binary complement of b. This is an
artificially designed mismatched decoder whose purpose is to
highlight the relative merits of the different random-coding
ensembles. We have also used a sub-optimal non-equiprobable
distribution PB1(0) = 0.5, PB2(0) = 0.6, PB3(0) = 0.4,
in order to further illustrate the difference in performance,
because the closer the input distribution to the optimal one the
less the gain one could have with multiple cost constraints.
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We also show in Fig. 3 the expurgated error exponents

Ex
r,0(R), Ex

r,L(R) (L = 1, 2) for the same BICM 8PAM
transmission over AWGN channel at snr = 5 dB. For rates
where the optimal ρ is ρ� = 1, the random-coding and the
expurgated error exponents coincide. For smaller rates, where
we have that ρ� > 1, there is a significant improvement
when the bad codes are expurgated from both code ensembles.
In line with Theorem 2.2, the cost-constraint on the code
ensemble helps us improve the expurgated error exponent for
almost all rates, though this improvement vanishes as R → 0.
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[13] L. Peng, A. Guillén i Fàbregas, and A. Martinez, “Mismatched Shaping
Schemes for Bit-Interleaved Coded Modulation,” in IEEE Int. Symp. Inf.
Theory, Cambridge, MA, USA, July, 2012.

[14] R. G. Gallager, Information Theory and Reliable Communication. John
Wiley & Sons, Inc. New York, NY, USA, 1968.

[15] S. S. (Shitz) and I. Sason, “Variations on the Gallager Bounds, Connec-
tions, and Applications,” IEEE Trans. Inf. Theory, vol. 48, no. 12, pp.
3029–3051, Dec. 2002.

[16] I. Csiszár and J. Körner, Information Theory: Coding Theorems for
Discrete Memoryless Systems. New York-San Francisco-London:
Academic Press, Inc.,, 2008.


