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hypothesis testing and holds for continuous memoryless channels.
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I. INTRODUCTION

The behavior of the channel-coding error probability may
be quantified in terms of error exponents, defined as the rate
of the error probability’s exponential decay in the block length
[1], [2]. Lower bounds on the exponent for discrete memory-
less channels (DMC) are easily obtained by random-coding
techniques. In contrast, the computation of upper bounds,
satisfied by every code, is more challenging since code-specific
bounds need to be optimized over each possible codebook.
Nevertheless, certain bounds avoid this optimization, e. g. the
sphere-packing bound [3], which is exponentially tight for
rates above the critical rate of the channel [1], [3].

The sphere-packing exponent has been derived using differ-
ent techniques. By building on an instance of binary hypothesis
testing, Shannon, Gallager and Berlekamp [3] derived an error
bound with the sphere-packing exponent (SP67); also based on
hypothesis testing, Blahut proposed an alternative derivation
of this bound in [4]; the sphere-packing exponent was also
obtained by using combinatorial methods in [5]; and based
on the method of types in [2]. The works [6], [7] addressed
the tightness of the SP67 bound for short to moderate block
lengths by improving the pre-exponential and rate penalty
terms. Recently, the metaconverse bound [8] has been shown
to have the exponential decay of the sphere-packing bound [9].

Cost constraints were first included in the derivation of the
sphere-packing bound in [10], by using a geometric approach
for the specific case of the Gaussian channel. The SP67 [3]
can also be extended to introduce cost constraints in general
memoryless semicontinuous channels [1, p. 329, footnote]. In
this work, we generalize the derivation of the sphere-packing
exponent in [4] to consider per-codeword cost constraints. In
contrast to the derivation in [3], no assumption of constant-
composition codewords is needed. This allows to extend the
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cost-constrained sphere-packing exponent to arbitrary continu-
ous memoryless channels. Building on this result, we establish
a connection between the cost-constrained sphere-packing and
Csiszár sphere-packing exponent for constant composition
codes [2, Ch. 2, Th. 5.3].

II. PRELIMINARIES

We study the problem of transmitting M equiprobable
messages over a DMC using length-n block codes. The
channel law is given by W
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An encoder maps the source message m 2 {1, . . . ,M} to

a length-n codeword x

m

, which is then transmitted over the
channel. The channel output y is decoded at the receiver fol-
lowing a maximum likelihood (ML) criterium. Let us denote
the output of the decoder as m̂(y). Then, the error probability
incurred when a message m was transmitted is
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where o(n) satisfies lim

n!1 o(n)/n = 0.
Any achievable error exponent for a DMC is upper

bounded [2]–[5] as E  Esp(R��), for any � > 0, where the
sphere-packing exponent Esp(R) is given by
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The error exponent achievable by a sequence of cost con-
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A. Hypothesis Testing

Based on an observation v 2 V in some alphabet V , consider
a binary hypothesis test between the hypotheses

H
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are distributions over V . For a binary
hypothesis test T : V ! {H

0
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} we define the type-I error
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when the true hypothesis is H
0
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error probabilities are respectively given by
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where P
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{E} denote the probability of the event E
computed with respect to P

0

and P
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, respectively. We define
the smallest type-I error among all (possibly randomized) tests
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A bound on the exponential behavior of lowest type-I and
type-II errors was found by Blahut in [4, Th. 10]. Let us define
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Theorem 1 ([4, Th. 10]): Let ⌫ > 0 be given, and let ⇣ 2
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where �

2

i

denotes the variance of the random variable
log

p̂(V )

Pi(V )

with respect to the distribution p̂, i = 0, 1.

III. COST-CONSTRAINED SPHERE-PACKING

For each message m = 1, . . . ,M , and based on the channel
output y, we define a binary hypothesis test between P
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✏

m

(C) = Pr{m̂(Y ) 6= m} = ✏I(Tm

). (17)

As (12) is a lower bound for any test, and using that ✏II(Tm

) 
1

M

, the maximal error probability can be lower bounded as

✏

max

(C) � ✏

m

(C) � ↵

1
M

�
W

n

(·|x
m

), Q

n

�
. (18)

We now bound the exponential behavior of (18). We define
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For each n, we choose Qn such that we obtain the lowest upper
bound in (24). We next show that, for an arbitrary � > 0,
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In order to show (26), assume first that the value of ⇢

achieving the saddlepoint in (25) is finite. Then, there exists
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where in (28) we used that the saddle point is achieved at
⇢ < ⇢̄; and (29) follows from the Kneser-Fan minimax theorem
[11, Th. 4.2], since, for fixed Q

n, the bracketed term in (28)
is concave in ⇢, and, for fixed ⇢ it is convex in Q
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(26) follows from (29) by increasing the range over which
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The dependence on the sequence of codebooks is present in
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Eq. (32) corresponds to that in [4, Cor. 4] (see also [2, p. 193,
Prob. 23], [3, Eq. (4.20)]). Using Theorem 2 it can be verified
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In order to introduce a cost constraint into this formulation
we make use of the following extension of Theorem 2.
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Proof: See Appendix A.
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For any sequence of constant composition codes such that
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Eq. (43) corresponds to Csiszár sphere-packing bound for
constant composition codes [2, Ch. 2, Th. 5.3]. Optimizing
(43) over compositions that satisfy the cost constraint and
applying the expurgation argument, we obtain
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Note the similarity between E
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While a(x) in the definition of E
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arbitrary function to be optimized, f(x) in (7) denotes the
cost function, which is given.

Appendix B derives the optimality conditions for the
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APPENDIX A
PROOF OF THEOREM 3

Let ⇢ � 0 be fixed. Let us define
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◆
� �

X

x

P (x)

�
⇠ � f(x)

�
, (51)

where � � 0, ⌘
x

� 0, � 2 R and � � 0 are the Lagrange
multipliers associated to the respective constraints in (50).

Let us denote by b
P , ŝ the values of P , s optimizing (50).

Similarly, let us define b�
y

, �

y

� b
P , ŝ

�
, b 

y

,  

y

� b
P , ŝ

�
. By

taking the derivative of (51) with respect to P (x) and equating
it to zero we obtain the following optimality condition

(1 + ⇢)

X

y

e

ŝ(f(x)�⇠)

W (y|x) 1
1+⇢
�b
�

y

�
⇢

= ⌘

x

+ �+ �

�
⇠ � f(x)

�
. (52)

Likewise, by taking the derivative of (51) with respect to s

and equating it to zero yields the condition

(1 + ⇢)

X

y

b
 

y

�b
�

y

�
⇢

= �. (53)

Multiplying both sides of (52) by b
P (x), summing over

x, and using that due to complementary slackness [13, Sec.
5.5.2], ⌘

x

b
P (x) = 0, �

P
x

b
P (x)

�
⇠ � f(x)

�
= 0, we obtain

� = (1 + ⇢)

X

y

�b
�

y

�
1+⇢

. (54)

Multiplying (52) by bP (x)(f(x)� ⇠), summing over x, yields

(1 + ⇢)

X

y

b
 

y

�b
�

y

�
⇢

=

X

x

⌘

x

b
P (x)

�
f(x)� ⇠

�

+ �

X

x

b
P (x)

�
f(x)� ⇠

�� �

X

x

b
P (x)

�
f(x)� ⇠

�
2

. (55)

Substituting (53) in (55), using that ⌘
x

b
P (x)=0, we obtain

� = �

X

x

b
P (x)

�
f(x)� ⇠

�� �

X

x

b
P (x)

�
f(x)� ⇠

�
2

. (56)

If the cost constraint is non-active, i. e.,
P

x

b
P (x)f(x) < ⇠,

the corresponding Lagrange multiplier is � = 0 due to
complementary slackness. If the cost constraint is active,P

x

b
P (x)f(x) = ⇠, and from (56) we obtain

� = ��

X

x

b
P (x)

�
f(x)� ⇠

�
2

. (57)



Since � � 0, � � 0, from (57) we conclude that � = � = 0,
so in either case � = 0. Substituting (54) into (52), yields
X

y

e

ŝ(f(x)�⇠)

W (y|x) 1
1+⇢
�b
�

y

�
⇢

=

X

y

�b
�

y

�
1+⇢

+

⌘

x

1 + ⇢

,

(58)

and since ⌘

x

� 0,
X

y

e

ŝ(f(x)�⇠)

W (y|x) 1
1+⇢
�b
�

y

�
⇢ �

X

y

(

b
�

y

)

1+⇢

. (59)

Finally, we use the definition of µ
1

(y, ⇢) in (34) to write
X

y

W

n

(y|x) 1
1+⇢

µ

1

(y, ⇢)

⇢

�
X

y

e

ŝ(fn(x)�n⇠)

W

n

(y|x) 1
1+⇢

µ

1

(y, ⇢)

⇢ (60)

�
X

y

µ

1

(y, ⇢)

1+⇢

, (61)

where in (60) we used that, by assumption, f
n

(x)  n⇠; and
(61) follows from factorizing (60) and applying (59) to each of
the factors. The step (60) holds with equality for f

n

(x) = n⇠,
and the step (61) is tight as long as bPn

(x) > 0.

APPENDIX B
OPTIMALITY CONDITIONS FOR E

1

(⇢) IN (46)
The Lagrangian of the optimization problem (46) is

L(P, a) = (1 + ⇢)

X

x

P (x)a(x)

� log

X

y

✓X

x

P (x)e

a(x)

W (y|x) 1
1+⇢

◆
1+⇢

� �

✓X

x

P (x)� 1

◆
� �

X

x

P (x)

�
f(x)� ⇠

�
, (62)

where � 2 R and � � 0 are the Lagrange multipliers associ-
ated to the constraints

P
x

P (x) = 1 and
P

x

P (x)f(x)  ⇠,
respectively.

Let bP , â(·), denote the values of P , a(·) optimizing (46).
Setting the derivative of L(P, a) with respect to a(x) to zero,
we obtain the following optimality condition,
P

y

e

â(x)

W (y|x) 1
1+⇢

⇣P
x

0
b
P (x

0
)e

â(x

0
)

W (y|x00
)

1
1+⇢

⌘
⇢

P
y

⇣P
x

00
b
P (x

00
)e

â(x

00
)

W (y|x00
)

1
1+⇢

⌘
1+⇢

= 1,

(63)

for x 2 X . Equating to zero the derivative of L(P, a) with
respect to P (x), and using (63) it follows that for bP , â(·),

(1 + ⇢)

�
â(x)� 1

�� �� �

�
f(x)� ⇠

�
= 0. (64)

Due to complementary slackness, �
P

x

b
P (x)

�
f(x)� ⇠

�
= 0.

Then, multiplying (64) by bP (x), summing over x 2 X , yields

� = (1 + ⇢)

X

x

b
P (x)

�
â(x)� 1

�
. (65)

Substituting (65) in (64), we obtain that, for x 2 X ,

â(x)�
X

x̄

b
P (x̄)â(x̄) =

�

1 + ⇢

�
f(x)� ⇠

�
. (66)

When the cost constraint is inactive its associated Lagrange
multiplier is � = 0. Hence, from (66) we obtain that â(x) =P

x̄

b
P (x̄)â(x̄), x 2 X , is a constant. On the other hand, when

the cost constraint is active,
P

x

b
P (x)f(x) = ⇠ and � � 0.

Then, (66) yields â(x) = sf(x) with s =

�

1+⇢

� 0.
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