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Abstract—The performance of the original successive cancel-
lation decoder of short-length polar codes is inferior to that
of the maximum-likelihood decoder. Existing sphere decoding
algorithms of polar codes have a high computational complexity
even for short lengths. This is because, when exploring the tree
defined by the generator matrix of the code, existing algorithms
employ loose branching conditions and end up visiting many
more nodes than needed. We propose improved branching con-
ditions that significantly reduce the search complexity. A simple
example reports an improvement of two orders of magnitude at
Eb

N0
= 4 dB compared to the standard sphere decoders.

Index Terms—Polar codes, Polar codes decoding, Sphere de-
coding

I. I NTRODUCTION

Polar codes were proposed in [1] as a coding technique
that provably achieves the capacity of symmetric binary-input
discrete memoryless channels (B-DMCs) with low encoding
and decoding complexity. The analysis and construction of
polar codes are summarized as follows: (1) Given a B-DMC,
virtual channels between the bits at the input of a linear
encoder and the channel output sequence are created, such that
the mutual information in each of these channels converges
to either zero or one as the block length tends to infinity;
the proportion of virtual channels with mutual information
close to one converges to the original channel’s capacity; (2)
By transmitting bits through the noiseless virtual channels,
under successive cancellation decoding, polar codes achieve
the capacity.

The performance of polar codes with successive cancellation
decoders is inferior to that of the maximum-likelihood (ML)
decoder. Decoders with better finite-length performance have
been proposed in the literature. Soft-output decoders suchas
belief propagation decoders of polar codes were proposed
in [2]–[4]. In [5], a list successive cancellation decoder was
proposed and the performance was comparable to that of
low-density parity-check (LDPC) codes. ML decoding of
polar codes implemented by means of sphere decoding (SD)
[6], [7] was studied in [8], [9]. These decoders have high
computational complexity at block length as short asN = 64.
Later, [10] proposed SD of binary polar codes via a non-binary
tree search, which can decode binary polar codes with length
up to 256.
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SD decoding was originally proposed to decode multi-
dimensional modulations for fading channels based on lattices
in the Euclidean space [11]. In essence, SD decoding performs
a depth-first tree search, pruning the search tree accordingto
certain branching conditions, e.g. [12]. SD has been exten-
sively studied in the context of multiple-input multiple-output
channels (e.g. [13]–[16]).

In this paper, we improve standard SD branching conditions
by computing lower bounds on the optimal decoding metric.
We first derive fixed lower bounds that only depend on the
received signals. Instead of obtaining fixed lower bounds by
enlarging the search space to the real field (as in [12]),
we propose fixed lower bounds that keep the finite field
constraints. We then propose dynamic lower bounds that are
updated during the tree search. Dynamic lower bounds depend
both on the received signals and the current tree path.

II. N OTATION AND PRELIMINARIES

Let N be the block length. Row vectors are assumed. Let
uI denote the sub-vector ofu with indicesi ∈ I. We useub

a

to denote the sub-vector(ua, . . . , ub).

A. Code Construction

Consider the matrixG2 = [ 1 0
1 1

], and letGN = G⊗n
2

be
theN ×N matrix obtained by the Kronecker product ofG2

with itself n = log
2
N times. Letgi,j denote the(i, j)-th entry

of GN . To construct codes of rateR = K
N

, N −K rows are
discarded, equivalently,N−K information bits corresponding
to those rows arefrozen to zero. The set of frozen indices is
called the frozen setF ; its complement is denoted byFc.
Different methods for choosingF yield different codes. For
the sake of simplicity, we only consider two selection rules
in this paper. Reed Muller (RM) codes discard rows with
lowest Hamming weights, while polar codes discard rows with
lowest mutual information of the induced virtual channels.
Information bits are denoted byu, with ui ∈ {0, 1} for
i ∈ Fc and ui = 0 for i ∈ F . Codewordsx are generated
by x = uGN , whereuGN is carried out in GF(2). LetU , C
denote the set of all information sequencesu and the set of
all codewordsx, respectively. Since some bits inu are frozen
to be0, we haveU , C ⊂ {0, 1}N .

B. Modulation and Channel Model

Throughout this paper, we assume the channel is a binary-
input additive white Gaussian noise (AWGN) channel. The



coded bitxi ∈ {0, 1} is mapped into the transmitted signal
si ∈ {+1,−1} via si = 1−2xi for i = 1, . . . , N . The received
signal isyi = si+zi, wherezi is i.i.d., additive white Gaussian
noise with zero mean and varianceσ2.

C. Sphere Decoding Algorithms

ML decoding over the binary-input AWGN channel is
equivalent to solving the following minimization problem,

û = argmin
u∈U

‖ȳ − uGN‖2 (1)

where ȳ , 1−y

2
and 1 is the all-one vector of length

N . Here the calculationuGN is carried out in GF(2) and
the result is treated as a real number vector in the rest
of the calculation. SD algorithms can be used to solve the
above minimization problem. The average complexity of these
algorithms isO(N3) in many scenarios [14]. SD algorithms
enumerate all pointsu ∈ U that satisfy the constraint

‖ȳ − uGN‖2 6 r2
0

(2)

Here r0 is a carefully chosen initial radius for the search.
Finding an appropriate initial radius is beyond the scope ofthis
paper. We refer readers to [14], [17] and references therein.

By the construction of the codeGN is a lower triangular
matrix, and thus

‖ȳ − uGN‖2 =

N
∑

i=1

(

ȳi −
N
⊕

j=i

(gj,iuj)
)2

. (3)

We use
b
⊕

j=a

(·) to denote the summation overGF (2). De-

fine mi(u
N
i ) ,

(

ȳi −
N
⊕

j=i

(gj,iuj)
)2

, where the summation

N
⊕

j=i

(gj,iuj) is carried out in GF(2) and the result is treated as

a real number in the rest of the calculation. Eq. (2) can be
written as

N
∑

i=1

mi(u
N
i ) 6 r2

0
. (4)

Sincemi(u
N
i ) only depends onuN

i , Eq. (4) can be solved
in a back-substitution manner. Starting from levelℓ = N , it
finds all uN such that

mN (uN ) 6 r2
0
, (5)

and then for every levelℓ = N − 1, . . . , 1, it finds all uℓ such
that

N
∑

i=ℓ

mi(u
N
i ) 6 r2

0
. (6)

When we reach levelℓ = 1, all points that satisfy Eq. (4) are
found. We need to point out that ifℓ ∈ F , the set of feasible
solutions for Eq. (6) is{0} sinceuℓ is frozen to0; if ℓ ∈ Fc,
the feasible set for Eq. (6) is{0, 1}.

This procedure can be interpreted as a depth-first tree search
algorithm. We callmℓ(u

N
ℓ ) the branch metric at levelℓ and

Eq. (6) the branching condition at levelℓ. All surviving leafs
in the tree are points that satisfy Eq. (4). In order to find the
ML point, [11] adaptively update the radiusr0. Once a valid
solution is found, the radiusr0 is updated and the tree search is
restarted with the new radiusr0. The authors in [13] proposed
an implementation that does not require restarting the tree
search after the radius is updated. We use this implementation
for all simulations in this paper.

III. SPHEREDECODING WITH FIXED LOWER BOUNDS

In this section, we discuss a method to speed up SD by
using stricter branching conditions. The key idea is to find
lower bounds to the quantity

min
u∈U

ℓ−1
∑

i=1

mi(u
N
i ) (7)

for eachℓ = N − 1, . . . , 1 based onyN
1
,uN

ℓ . Let Λℓ be one
such bound, then we have

N
∑

i=ℓ

mi(u
N
i ) + Λℓ 6 r2

0
. (8)

When the lower bound is non-trivial, i.e.Λℓ > 0, Eq. (8) gives
a stricter branching condition than Eq. (6).

Lemma 1.For everyi = 1, . . . , N,u ∈ U , we have that

mi(u
N
i ) > min

xi∈{0,1}
(ȳi − xi)

2
. (9)

Proof: We have that

mi(u
N
i ) > min

u∈{0,1}N

mi(u
N
i ) (10)

= min
u∈{0,1}N

(

ȳi −
N
⊕

j=i

(gj,iuj)
)2

(11)

= min
xi∈{0,1}

(ȳi − xi)
2
. (12)

Eq. (10) comes from the fact thatU ⊂ {0, 1}N . We have

Eq. (12) by lettingxi =
N
⊕

j=i

(gj,iuj) with xi ∈ {0, 1} since

the summation is carried out in GF(2). �
Let

LB(i) = min
xi∈{0,1}

(ȳi − xi)
2 (13)

we now use the branching condition

N
∑

i=ℓ

mi(u
N
i ) +

ℓ−1
∑

i=1

LB(i) 6 r2
0

(14)

at level ℓ to decide whether the pathuN
ℓ should be kept in

the tree search or not. We call SD algorithms with branching
conditions Eq. (14)SD algorithms with fixed lower bounds.
Compared to standard SD algorithms, SD algorithms with
fixed lower bounds have stricter conditions which enable us to
remove branches that would eventually be outside the sphere



at an earlier stage. Since LB(i), i = 1, . . . , N only depends on
y, the extra computational complexity caused by calculating
fixed lower bounds isO(N).

A. Simulations
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Fig. 1. Average number of nodes visited for RM(64, 57).
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Fig. 2. Error rate performance for RM(64, 57).

Fig. 1 shows the complexity of SD algorithms with fixed
lower bounds for a Reed-Muller (RM)(64, 57) code. The
complexity is measured by the number of nodes visited during
the SD. We use the Schnorr-Euchner Enumeration [18] as the
enumerating order at each level. The initial square radiusr2

0

is set to be+∞.1 We observe that the complexity of SD
algorithms with fixed lower bounds is significantly lower than
that of standard SD algorithms over the whole SNR range.
We then compare our results with decoding algorithms that
achieve ML performance proposed in [8] and [9]. Note that

1The initial square radius is set to be sufficient large to guarantee that the
ML point falls within the sphere. Moreover, the first point found is always
the Babai point, thus the complexity of SD algorithms is not sensitive to
increasingr2

0
beyond the squared Babai distance [13].

the simulation setup is the same for Fig 1, [8, Fig. 4] and [9,
Fig. 3]. We can see that our algorithms have advantages in
terms of average number of nodes visited over [8, Fig. 4] and
[9, Fig. 3] for all SNR range. For example, atEb

N0

= 4 dB,
the number of average nodes visited reported in [8, Fig. 4]
is of the order of105 and 104 in [9, Fig. 3], while for SD
algorithms with fixed lower bounds, the number of average
nodes visited is at the order of103 (Fig. 1).

Fig. 2 confirms that error rate performance of standard SD
algorithms and that of SD algorithms with fixed lower bounds
is the same.
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Fig. 3. Average number of nodes visited for RM(64,K) with R = K

64
,
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R = 0.89, Eb
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= 8 dB.

We now evaluate the tradeoff between the complexity of the
algorithms and the code rate. Fig. 3 shows that the complexity
decreases as the rate increases. SD algorithms with fixed lower
bounds show lower complexity over standard SD algorithms
over all rate regions.

Fig. 4 shows how the complexity increases with the length
for a fixed rate. We can see that the complexity of SD



algorithms with fixed lower bounds grows slower with the
block length than the standard SD algorithm.

IV. SPHEREDECODING WITH DYNAMIC LOWER BOUNDS

From Fig. 3, as the code rate decreases, the complexity of
SD with fixed lower bounds grows. This is due to the fact that
the fixed lower bounds are obtained as if there were no frozen
bits (i.e. uncoded). Thus, since fixed lower bounds do not take
advantage of the presence of frozen bits, fixed lower bounds
for low rates could be improved upon. A possible improvement
would be to prune the searching tree by using dynamic lower
bounds that also depend on the current pathuN

ℓ at levelℓ. In
order to introduce our dynamic lower bounds, we first need to
introduce further notation and preprocessing.

Given a frozen setF , generate anN × N matrix Ĝ by
substituting theith row inGN with the all-zero vector, for all
i ∈ F . Let ĝi,j denote the(i, j)th entry ofĜ. Let Ĝℓ denote
the ℓ× ℓ submatrix ofĜ which contains the firstℓ rows and
columns ofĜ.

For everyℓ ∈ Fc, find all non-zero identical columns in
Ĝℓ−1. Let dℓ denote the number of such columns. Define a
set of setsIℓ such that each element inIℓ is a set that contains
the indices of non-zero identical columns in̂Gℓ−1.

A. SD with Dynamic Lower Bounds

We first illustrate the idea of SD with dynamic lower bounds
by an example. Then we will give general algorithms. For an
(8, 4) polar code with the frozen setF = {1, 2, 3, 5}. After
preprocessing, we have

Ĝ =

























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

























, (15)

and

d8 = 0, I8 = ∅; (16)

d7 = 3, I7 = {{6, 5}, {4, 3}, {2, 1}}; (17)

d6 = 1, I6 = {{4, 3, 2, 1}}; (18)

d4 = 0, I0 = ∅. (19)

Assume we are at levelℓ = 7. Therefore,(u7, u8) are fixed
to (0, 0) for simplicity. Thus, we now would like to bound

min
u∈U

6
∑

i=1

mi(u
N
i ). A convenient bound is

min
u∈U

6
∑

i=1

mi(u
N
i ) > min

u∈U

2
∑

i=1

mi(u
N
i )

+ min
u∈U

4
∑

i=3

mi(u
N
i )

+ min
u∈U

6
∑

i=5

mi(u
N
i ) (20)

= min
v1∈{0,1}

2
∑

i=1

(ȳi − v1)
2

+ min
v2∈{0,1}

4
∑

i=3

(ȳi − v2)
2

+ min
v3∈{0,1}

6
∑

i=5

(ȳi − v3)
2. (21)

We have Eq. (21) since

v1 =

8
⊕

j=1

(ĝj,1uj) =

8
⊕

j=2

(ĝj,2uj), (22)

v2 =
8

⊕

j=3

(ĝj,3uj) =
8

⊕

j=4

(ĝj,4uj), (23)

v3 =

8
⊕

j=5

(ĝj,5uj) =

8
⊕

j=6

(ĝj,6uj). (24)

Eqs. (22)-(24) follow since(u7, u8) = (0, 0) and columns
{6, 5}, {4, 3}, {2, 1} of Ĝ6 are identical, respectively. Eq. (21)
gives a tighter bound than the fixed lower bounds discussed in
the previous section. Furthermore, it is particularly convenient
since, thanks to the fact that columns{6, 5}, {4, 3}, {2, 1} of
Ĝ6 are identical, we only need to minimize over 1 variable
instead of 2 in each term of Eq. (21). This idea is generalized
in the following.

Lemma 2. At level ℓ ∈ Fc, let tℓ,i =
N
⊕

j=ℓ

(gj,iuj). If dℓ > 0,

then for allI ∈ Iℓ, we have

∑

i∈I

mi(u
N
i ) > min

u∈{0,1}

∑

i∈I

(ȳi − u⊕ tℓ,i)
2 (25)

>
∑

i∈I

LB(i) (26)

where LB(i) is defined in(13).



Proof:

∑

i∈I

mi(u
N
i ) =

∑

i∈I

(

ȳi −
N
⊕

j=i

(gj,iuj)
)2

(27)

=
∑

i∈I

(

ȳi −
(

ℓ−1
⊕

j=i

(gj,iuj)
)

⊕ tℓ,i

)2

(28)

> min
u∈{0,1}

∑

i∈I

(ȳi − u⊕ tℓ,i)
2 (29)

>
∑

i∈I

min
u∈{0,1}

(ȳi − u⊕ tℓ,i)
2 (30)

=
∑

i∈I

LB(i). (31)

Eq. (29) comes from the fact that,
ℓ−1
⊕

j=i

(gj,iuj) gives the same

value for all i ∈ I. �
Note that the calculation oftℓ,i forms part of the calculation
N
⊕

j=i

(gj,iuj). Thustℓ,i can be stored and re-used during the de-

coding process. The extra complexity of dynamically updating
lower bounds comes from the minimization step Eq. (29).

Now we summarize the steps for SD with dynamic lower
bounds:

• Preprocessing: Given an (N,K) polar code with a
frozen setF , calculatedℓ, Iℓ for all ℓ ∈ Fc.

• Dynamically update lower bounds:At level ℓ. If dℓ >

0, for all I ∈ Iℓ:

– Calculatetℓ,i =
N
⊕

j=ℓ

(gj,iuj), for all i ∈ I.

– Calculate

min
u∈{0,1}

∑

i∈I

(ȳi − u⊕ tℓ,i)
2. (32)

– Update lower bounds on
∑

i∈I

mi(u
N
i ) using Eq. (32).
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Fig. 5. Average number of nodes visited for RM(64,K) for Eb

N0
= 6 dB.

Fig. 5 compares the complexity of SD with fixed and dy-
namic lower bounds. We observe that dynamic lower bounds,
further reduce the complexity in the low rate region. We should
note that the average computational complexity for each node
of dynamic lower bound is higher because we need to update
the lower bounds during the tree search.

V. CONCLUSIONS

We have proposed several techniques to lower the complex-
ity of ML decoding of polar and RM codes. This is achieved
by means of improving the standard branching conditions
of the sphere decoder by introducing lower bounds on the
remaining metric. The proposed techniques improve the search
complexity of the algorithm by several orders of magnitude.
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