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Second-Order Asymptotics for the Gaussian MAC
with Degraded Message Sets

Jonathan Scarlett and Vincent Y. F. Tan

Abstract

This paper studies the second-order asymptotics of the Gaussian multiple-access channel with degraded message
sets. For a fixed average error probability ε ∈ (0, 1) and an arbitrary point on the boundary of the capacity region,
we characterize the speed of convergence of rate pairs that converge to that boundary point for codes that have
asymptotic error probability no larger than ε. We do so by elucidating clear relationships between the rate pairs
achievable at large blocklengths and the local second-order asymptotics, i.e. the second-order behavior of these rate
pairs in the neighborhood of a boundary point. We provide a numerical example to illustrate how the angle of
approach to a boundary point affects the second-order coding rate. This is the first conclusive characterization of the
second-order asymptotics of a network information theory problem in which the capacity region is not a polygon.

Index Terms

Gaussian multiple-access channel, Degraded message sets, Superposition coding, Strong converse, Finite block-
lengths, Second-order coding rates, Dispersion.

I. INTRODUCTION

In this paper, we revisit the Gaussian multiple-access channel (MAC) with degraded message sets (DMS). This
is a communication model in which two independent messages are to be sent from two sources to a common
destination. One encoder, the cognitive or informed encoder, has access to both messages, while the uninformed
encoder only has access to its own message. Both transmitted signals are assumed to be power limited, and their
sum is corrupted by additive white Gaussian noise (AWGN). See Fig. 1.

The capacity region, i.e. the set of all pairs of achievable rates, is well-known (e.g. see [1, Ex. 5.18(b)]), and is
given by the set of rate pairs (R1, R2) satisfying

R1 ≤ C
(
(1− ρ2)S1

)
(1)

R1 +R2 ≤ C
(
S1 + S2 + 2ρ

√
S1S2

)
(2)

for some ρ ∈ [0, 1], where S1 and S2 are the admissible transmit powers, and C(x) := 1
2 log(1 +x) is the Gaussian

capacity function. The capacity region for S1 = S2 = 1 is illustrated in Fig. 2. The boundary is parametrized by
ρ, and the direct part is proved using superposition coding [2].

While the capacity region is well-known, there is substantial motivation to understand the second-order asymp-
totics for this problem. For any given point (R∗1, R

∗
2) on the boundary of the capacity region, we study the rate of

convergence to that point for an ε-reliable code. More precisely, we characterize the set of all (L1, L2) pairs, known
as second-order coding rates [3]–[6], for which there exist sequences of codes whose asymptotic error probability
does not exceed ε, and whose code sizes M1,n and M2,n behave as

logMj,n ≥ nR∗j +
√
nLj + o

(√
n
)
, j = 1, 2. (3)

This study allows us to understand the fundamental tradeoffs between the rates of transmission and average error
probability from a perspective different from the study of error exponents. Here, instead of fixing a pair of rates
and studying the exponential decay of the error probability ε, we fix ε and study the speed at which a sequence of
rate pairs approaches an information-theoretic limit as the blocklength grows.

J. Scarlett is with the Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, U.K. (email: jmscarlett@gmail.com).
V. Y. F. Tan is with the Institute for Infocomm Research (I2R), A*STAR, Singapore and with the Department of Electrical and Computer
Engineering, National University of Singapore. (email: vtan@nus.edu.sg).
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Fig. 1. The model for the Gaussian MAC with degraded message sets (DMS).

A. Related Work

The study of the second-order asymptotics of channel coding for discrete memoryless channels was initiated by
Strassen [7]. For the single-user AWGN channel with (equal or maximal) power constraint S, a specialization of our
model with M2,n = 1, Hayashi [4] and Polyanskiy et al. [8] showed that the optimum (highest) second-order coding
rate is

√
V(S)Φ−1(ε), where V(x) := x(x+2)

2(x+1)2 is the Gaussian dispersion function. More precisely, Polyanskiy et
al. [8, Thm. 54] showed the asymptotic expansion

logM∗(n, ε) = nC(S) +
√
nV(S)Φ−1(ε) + gn, (4)

where M∗(n, ε) is the maximum size of a length-n block code with (either average or maximum) error probability
ε, and O(1) ≤ gn ≤ 1

2 log n+O(1). In fact, the expression for V(S) was already known to Shannon [9, Sec. X],
who analyzed the reliability function of the AWGN channel for rates close to capacity.

There have been numerous attempts to study the finite blocklength behavior and second-order asymptotics for
MACs [10]–[18], but most of these works focus on inner bounds (the direct part). The development of tight and
easily-evaluated converse bounds remains more modest, and those available do not match the direct part in general or
are very restrictive (e.g. product channels were considered in [18]). We will see that the assumption of Gaussianity
of the channel model together with the degradedness of the message sets allows us to circumvent some of the
difficulties in proving second-order converses for the MAC, thus allowing us to obtain a conclusive second-order
result for the Gaussian MAC with DMS.

We focus primarily on local second-order asymptotics propounded by Haim et al. [18] for general network
information theory problems, where a boundary point is fixed and the rate of approach is characterized. This is
different from the global asymptotics studied in [10]–[17], which we also study here as an initial step towards
obtaining the local result. Similarly to Haim et al. [18], we believe that the study of local second-order asymptotics
provides significantly greater insight into the system performance.

B. Main Contributions

Our main contribution is the characterization of the set of admissible second-order coding rates (L1, L2) in the
curved part of the boundary of the capacity region. For a point on the boundary characterized by ρ ∈ (0, 1), we
show that the set of achievable second-order rate pairs (L1, L2) is given by those satisfying

[
L1

L1 + L2

]
∈
⋃

β∈R

{
βD(ρ) + Ψ−1(V(ρ), ε)

}
, (5)

where the entries of D(ρ) are the derivatives of the capacities in (1)–(2), V(ρ) is the dispersion matrix [10],
[11], and Ψ−1 is the 2-dimensional generalization of the inverse of the cumulative distribution of a Gaussian. (All
quantities are defined precisely in the sequel.) Thus, the contribution from the Gaussian approximation Ψ−1(V(ρ), ε)
is insufficient for characterizing the second-order asymptotics of multi-terminal channel coding problems in general,
and we need to take into account contributions from the first-order term in terms of its slope D(ρ). This is in stark
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Fig. 2. Capacity region (CR) in nats/use of a Gaussian MAC with DMS where S1 = S2 = 1, i.e. 0 dB. Observe that ρ ∈ [0, 1] parametrizes
points on the boundary. Every point on the curved part of the boundary is achieved by a unique input distribution N (0,Σ(ρ)).

contrast to single-user problems (e.g. [3], [4], [6]–[8]) and the (two-encoder) Slepian-Wolf problem [5], [10] where
the Gaussian approximation in terms of a dispersion quantity is sufficient for second-order asymptotics.

We first derive global second-order results [10], [18] and then use them to obtain local second-order results. As
in [18], we make a strong connection between these two perspectives. To the best of our knowledge, our main
result (Theorem 3) provides the first complete characterization of the second-order asymptotics of a multi-user
information theory problem in which the boundary of the capacity region (or optimal rate region for source coding
problems) is curved.

II. PROBLEM SETTING AND DEFINITIONS

In this section, we state the channel model, various definitions and some known results.
Notation: Given integers l ≤ m, we use the discrete interval [1] notations [l : m] := {l, . . . ,m} and [m] := [1 :

m]. All log’s and exp’s are with respect to the natural base e. The `p-norm of the vectorized version of matrix A

is denoted by ‖A‖p :=
(∑

i,j |ai,j |p
)1/p. For two vectors of the same length a,b ∈ Rd, the notation a ≤ b means

that aj ≤ bj for all j ∈ [d]. The notation N (u;µ,Λ) denotes the multivariate Gaussian probability density function
(pdf) with mean µ and covariance Λ. The argument u will often remain unspecified. We use standard asymptotic
notations: fn ∈ O(gn) if and only if (iff) lim supn→∞

∣∣fn/gn
∣∣ < ∞; fn ∈ Ω(gn) iff gn ∈ O(fn); fn ∈ Θ(gn) iff

fn ∈ O(gn) ∩ Ω(gn); fn ∈ o(gn) iff lim supn→∞
∣∣fn/gn

∣∣ = 0; and fn ∈ ω(gn) iff lim infn→∞
∣∣fn/gn

∣∣ =∞.

A. Channel Model

The signal model for the Gaussian MAC is given by

Y = X1 +X2 + Z, (6)
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where X1 and X2 represent the inputs to the channel, Z ∼ N (0, 1) is additive Gaussian noise with zero mean and
unit variance, and Y is the output of the channel. Thus, the channel from (X1, X2) to Y can be written as

W (y|x1, x2) =
1√
2π

exp

(
−1

2
(y − x1 − x2)2

)
. (7)

The channel is used n times in a memoryless manner without feedback. The channel inputs (i.e., the transmitted
codewords) x1 = (x11, . . . , x1n) and x2 = (x21, . . . , x2n) are required to satisfy the maximal power constraints

‖x1‖22 ≤ nS1, and ‖x2‖22 ≤ nS2, (8)

where S1 and S2 are arbitrary positive numbers. We do not incorporate multiplicative gains g1 and g2 to X1 and
X2 in the channel model in (6); this is without loss of generality, since in the presence of these gains we may
equivalently redefine (8) with S′j := Sj/g

2
j for j = 1, 2.

B. Definitions

Definition 1 (Code). An (n,M1,n,M2,n, S1, S2, εn)-code for the Gaussian MAC with DMS consists of two encoders
f1,n, f2,n and a decoder ϕn of the form f1,n : [M1,n] × [M2,n] → Rn, f2,n : [M2,n] → Rn and ϕn : Rn →
[M1,n]× [M2,n] which satisfy

‖f1,n(m1,m2)‖22 ≤ nS1 ∀ (m1,m2) ∈ [M1,n]× [M2,n], (9)

‖f2,n(m2)‖22 ≤ nS2 ∀m2 ∈ [M2,n], (10)

Pr
(
(M1,M2) 6= (M̂1, M̂2)

)
≤ εn, (11)

where the messages M1 and M2 are uniformly distributed on [M1,n] and [M2,n] respectively, and (M̂1, M̂2) :=
ϕn(Y n) are the decoded messages.

Since S1 and S2 are fixed positive numbers, we suppress the dependence of the subsequent definitions, re-
sults and parameters on these constants. We will often make reference to (n, ε)-codes; this is the family of
(n,M1,n,M2,n, S1, S2, ε)-codes where the sizes M1,n,M2,n are left unspecified.

Definition 2 ((n, ε)-Achievability). A pair of non-negative numbers (R1, R2) is (n, ε)-achievable if there exists an
(n,M1,n,M2,n, S1, S2, εn)-code such that

1

n
logMj,n ≥ Rj , j = 1, 2, and εn ≤ ε. (12)

The (n, ε)-capacity region C(n, ε) ⊂ R2
+ is defined to be the set of all (n, ε)-achievable rate pairs (R1, R2).

Definition 2 is a non-asymptotic one that is used primarily for the global second-order results. We now introduce
definitions that involve the existence of sequences of codes, implying that these are asymptotic-type definitions.

Definition 3 (First-Order Coding Rates). A pair of non-negative numbers (R1, R2) is ε-achievable if there exists a
sequence of (n,M1,n,M2,n, S1, S2, εn)-codes such that

lim inf
n→∞

1

n
logMj,n ≥ Rj , j = 1, 2, and lim sup

n→∞
εn ≤ ε. (13)

The ε-capacity region C(ε) ⊂ R2
+ is defined to be the closure of the set of all ε-achievable rate pairs (R1, R2).

The capacity-region C is defined as
C :=

⋂

ε>0

C(ε) = lim
ε→0
C(ε), (14)

where the limit exists because of the monotonicity of C(ε).

Next, we state the most important definitions concerning local second-order coding rates in the spirit of Nomura-
Han [5] and Tan-Kosut [10]. We will spend the majority of the paper developing tools to characterize these rates.
Here (R∗1, R

∗
2) is a pair of rates on the boundary of C(ε).
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Definition 4 (Second-Order Coding Rates). A pair of numbers (L1, L2) is (ε,R∗1, R
∗
2)-achievable if there exists a

sequence of (n,M1,n,M2,n, S1, S2, εn)-codes such that

lim inf
n→∞

1√
n

(logMj,n − nR∗j ) ≥ Lj , j = 1, 2, and lim sup
n→∞

εn ≤ ε. (15)

The (ε,R∗1, R
∗
2)-optimal second-order coding rate region L(ε;R∗1, R

∗
2) ⊂ R2 is defined to be the closure of the set

of all (ε,R∗1, R
∗
2)-achievable rate pairs (L1, L2).

Stated differently, if (L1, L2) is (ε,R∗1, R
∗
2)-achievable, then there are codes whose error probabilities are asymp-

totically no larger than ε, and whose sizes (M1,n,M2,n) satisfy the asymptotic relation in (3). Even though we
refer to L1 and L2 as “rates”, they may be negative [3]–[6]. A negative value corresponds to a backoff from the
first-order term, whereas a positive value corresponds to an addition to the first-order term.

C. Existing First-Order Results

To put things in context, let us review some existing results concerning the ε-capacity region. To state the result
compactly, we define the mutual information vector as

I(ρ) =

[
I1(ρ)
I12(ρ)

]
:=

[
C
(
S1(1− ρ2)

)

C
(
S1 + S2 + 2ρ

√
S1S2

)
]
. (16)

For a pair of rates (R1, R2), let the rate vector be

R :=

[
R1

R1 +R2

]
. (17)

A statement of the following result is provided in [1, Ex. 5.18(b)]. A weak converse was proved for the more
general Gaussian MAC with common message in [19].

Proposition 1 (Capacity Region). The capacity region of the Gaussian MAC with DMS is given by

C =
⋃

0≤ρ≤1

{
(R1, R2) ∈ R2

+ : R ≤ I(ρ)
}
. (18)

The union on the right is a subset of C(ε) for every ε ∈ (0, 1). However, only the weak converse is implied
by (18). To the best of the authors’ knowledge, the strong converse for the Gaussian MAC with DMS has not been
demonstrated. A by-product of the derivation of the second-order asymptotics in this paper is the strong converse,
allowing us to assert that for all ε ∈ (0, 1),

C = C(ε). (19)

The direct part of Proposition 1 can be proved using superposition coding [2]. Treat X2 as the cloud center and X1

as the satellite codeword. The input distribution to achieve a point on the boundary characterized by some ρ ∈ [0, 1]
is a 2-dimensional Gaussian with zero mean and covariance matrix

Σ(ρ) :=

[
S1 ρ

√
S1S2

ρ
√
S1S2 S2

]
. (20)

Thus, the parameter ρ represents the correlation between the two users’ codewords.

III. GLOBAL SECOND-ORDER RESULTS

In this section, we present inner and outer bounds to C(n, ε). We begin with some definitions. Let V(x, y) :=
x(y+2)

2(x+1)(y+1) be the Gaussian cross-dispersion function and let V(x) := V(x, x) be the Gaussian dispersion func-
tion [4], [8], [9] for a single-user additive white Gaussian noise channel with signal-to-noise ratio x. For fixed
0 ≤ ρ ≤ 1, define the information-dispersion matrix

V(ρ) :=

[
V1(ρ) V1,12(ρ)
V1,12(ρ) V12(ρ)

]
, (21)
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where the elements of the matrix are

V1(ρ) := V
(
S1(1− ρ2)

)
, (22)

V1,12(ρ) := V
(
S1(1− ρ2), S1 + S2 + 2ρ

√
S1S2

)
, (23)

V12(ρ) := V
(
S1 + S2 + 2ρ

√
S1S2

)
. (24)

Let (X1, X2) ∼ PX1,X2
= N (0; Σ(ρ)), and define QY |X2

and QY to be Gaussian distributions induced by PX1,X2

and the channel W , namely

QY |X2
(y|x2) := N

(
y;x2(1 + ρ

√
S1/S2), 1 + S1(1− ρ2)

)
, (25)

QY (y) := N
(
y; 0, 1 + S1 + S2 + 2ρ

√
S1S2

)
. (26)

It should be noted that the random variables (X1, X2) and the densities QY |X2
and QY all depend on ρ; this

dependence is suppressed throughout the paper. The mutual information vector I(ρ) and information-dispersion
matrix V(ρ) are the mean vector and conditional covariance matrix of the information density vector

j(X1, X2, Y ) :=

[
j1(X1, X2, Y )
j12(X1, X2, Y )

]
=

[
log

W (Y |X1, X2)

QY |X2
(Y |X2)

log
W (Y |X1, X2)

QY (Y )

]T
. (27)

That is, we can write I(ρ) and V(ρ) as

I(ρ) = E
[
j(X1, X2, Y )

]
, (28)

V(ρ) = E
[
Cov

(
j(X1, X2, Y )

∣∣X1, X2

)]
. (29)

For a given point (z1, z2) ∈ R2 and a (non-zero) positive semi-definite matrix V, define

Ψ(z1, z2; V) :=

∫ z2

−∞

∫ z1

−∞
N (u; 0,V) du, (30)

and for a given ε ∈ (0, 1), define the set

Ψ−1(V, ε) :=
{

(z1, z2) ∈ R2 : Ψ(−z1,−z2; V) ≥ 1− ε
}
. (31)

These quantities can be thought of as the generalization of the cumulative distribution function (cdf) of the standard
Gaussian Φ(z) :=

∫ z
−∞N (u; 0, 1) du and its inverse Φ−1(ε) := sup

{
z ∈ R : Φ(−z) ≥ 1−ε

}
to the bivariate case.
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For ε < 1
2 , the points contained in Ψ−1(V, ε) have negative coordinates. See Fig. 3 for an illustration of (scaled

versions of) Ψ−1(V(ρ), ε).
Let g(ρ, ε, n) and g(ρ, ε, n) be arbitrary functions of ρ, ε and n for now, and define the inner and outer regions

Rin(n, ε; ρ) :=

{
(R1, R2) ∈ R2 : R ∈ I(ρ) +

Ψ−1(V(ρ), ε)√
n

+ g(ρ, ε, n)1

}
, (32)

Rout(n, ε; ρ) :=

{
(R1, R2) ∈ R2 : R ∈ I(ρ) +

Ψ−1(V(ρ), ε)√
n

+ g(ρ, ε, n)1

}
. (33)

Theorem 2 (Global Bounds on the (n, ε)-Capacity Region). There exist functions g(ρ, ε, n) and g(ρ, ε, n) such
that the (n, ε)-capacity region satisfies

⋃

0≤ρ≤1
Rin(n, ε; ρ) ⊂ C(n, ε) ⊂

⋃

−1≤ρ≤1
Rout(n, ε; ρ), (34)

and such that g and g satisfy the following properties:
1) For any ε ∈ (0, 1) and ρ ∈ (−1, 1), we have

g(ρ, ε, n) = O

(
log n

n

)
, and g(ρ, ε, n) = O

(
log n

n

)
. (35)

2) For any ε ∈ (0, 1) and any sequence {ρn} with ρn → ±1, we have

g(ρn, ε, n) = o

(
1√
n

)
, and g(ρn, ε, n) = o

(
1√
n

)
. (36)

The proof of Theorem 2 is provided in Section VI. We remark that even though the union for the outer bound is
taken over ρ ∈ [−1, 1], only the values ρ ∈ [0, 1] will play a role in establishing the local asymptotics in Section IV,
since negative values of ρ are not even first-order optimal, i.e. they fail to achieve a point on the boundary of the
capacity region.

IV. LOCAL SECOND-ORDER CODING RATES

In this section, we present our main result, namely, the characterization of the (ε,R∗1, R
∗
2)-optimal second-order

coding rate region L(ε;R∗1, R
∗
2) (see Definition 4), where (R∗1, R

∗
2) is an arbitrary point on the boundary of C. Our

result is stated in terms of the derivative of the mutual information vector with respect to ρ, namely

D(ρ) =

[
D1(ρ)
D12(ρ)

]
:=

∂

∂ρ

[
I1(ρ)
I12(ρ)

]
, (37)

where the individual derivatives are given by

∂I1(ρ)

∂ρ
=

−S1ρ
1 + S1(1− ρ2)

, (38)

∂I12(ρ)

∂ρ
=

√
S1S2

1 + S1 + S2 + 2ρ
√
S1S2

. (39)

Note that ρ ∈ (0, 1] represents the strictly concave part of the boundary (see Fig. 2), and in this interval we have
D1(ρ) < 0 and D12(ρ) > 0.

We introduce the following notation: For a vector v = (v1, v2) ∈ R2, define the down-set of v as

v− := {(w1, w2) ∈ R2 : w1 ≤ v1, w2 ≤ v2}. (40)

We are now in a position to state our main result.

Theorem 3 (Optimal Second-Order Coding Rate Region). Depending on (R∗1, R
∗
2), we have the following three

cases:
(i) If R∗1 = I1(0) and R∗1 +R∗2 ≤ I12(0) (vertical segment of the boundary corresponding to ρ = 0), then

L(ε;R∗1, R
∗
2) =

{
(L1, L2) ∈ R2 : L1 ≤

√
V1(0)Φ−1(ε)

}
. (41)
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(ii) If R∗1 = I1(ρ) and R∗1 +R∗2 = I12(ρ) (curved segment of the boundary corresponding to 0 < ρ < 1), then

L(ε;R∗1, R
∗
2) =



(L1, L2) ∈ R2 :

[
L1

L1 + L2

]
∈
⋃

β∈R

{
βD(ρ) + Ψ−1(V(ρ), ε)

}
 . (42)

(iii) If R∗1 = 0 and R∗1 +R∗2 = I12(1) (point on the vertical axis corresponding to ρ = 1), then

L(ε;R∗1, R
∗
2) =



(L1, L2) ∈ R2 :

[
L1

L1 + L2

]
∈
⋃

β≤0

{
βD(1) +

[
0√

V12(1)Φ−1(ε)

]−}


 . (43)

The proof of Theorem 3 is provided in Section VII. It leverages on the global second-order result in Theorem 2.

A. Discussion

Observe that in case (i), the second-order region is simply characterized by a scalar dispersion term V1(0) and
the inverse of the Gaussian cdf Φ−1. Roughly speaking, in this part of the boundary, there is effectively only a
single rate constraint in terms of R1, since we are operating “far away” from the sum rate constraint. This results
in a large deviations-type event for the sum rate constraint which has no bearing on second-order asymptotics; see
further discussions in [5], [10] and [18].

Cases (ii)–(iii) are more interesting, and their proofs are non-trivial. As in Nomura-Han [5] and Tan-Kosut [10],
the second-order asymptotics for case (ii) depend on the dispersion matrix V(ρ) and the 2-dimensional analogue of
the inverse of the Gaussian cdf Ψ−1, since both rate constraints are active at a point on the boundary parametrized
by ρ ∈ (0, 1). However, in our setting, the expression containing Ψ−1 alone (i.e. the expression obtained by setting
β = 0 in (42)) corresponds to only considering the unique input distribution N (0,Σ(ρ)) achieving the point
(I1(ρ), I12(ρ)− I1(ρ)). From Fig. 2, this is not sufficient to achieve all second-order coding rates, since there are
non-empty regions within the capacity region that are not contained in the trapezium of rate pairs achievable using
N (0,Σ(ρ)).

Thus, to achieve all (L1, L2) pairs, we must allow the input distribution to vary with the blocklength n. This is
manifested in the βD(ρ) term. Our proof of the direct part involves random coding with an input distribution of
the form N (0,Σ(ρn)), where ρn − ρ = O

(
1√
n

)
. By a Taylor series, the resulting mutual information vector I(ρn)

is approximately I(ρ) + (ρn − ρ)D(ρ). Since ρn − ρ = O
(

1√
n

)
, the gradient term (ρn − ρ)D(ρ) also contributes

to the second-order behavior, together with the Gaussian approximation term Ψ−1(V(ρ), ε).
For the converse, we consider an arbitrary sequence of codes with rate pairs {(R1,n, R2,n)}n≥1 converging to

(I1(ρ), I12(ρ) − I1(ρ)) with second-order behavior given by (15). From the global result, we know [R1,n, R1,n +
R2,n]T ∈ Rout(n, ε; ρn) for some sequence of ρn. We then establish, using the definition of the second-order coding
rates in (15), that ρn = ρ+O

(
1√
n

)
. Finally, by the Bolzano-Weierstrass theorem [20, Thm. 3.6(b)], we may pass

to a subsequence of ρn (if necessary), and this establishes the converse.
A similar discussion holds true for case (iii); the main differences are that the covariance matrix is singular, and

that the union in (43) is taken over β ≤ 0 only, since ρn can only approach one from below.

B. Second-Order Asymptotics for a Given Angle of Approach

Here we study the second-order behavior when a point on the boundary is approached from a given angle, as
was done in Tan-Kosut [10]. If ε < 1

2 (resp. ε > 1
2 ), we approach a boundary point from inside (resp. outside) the

capacity region. We focus on the most interesting case in Theorem 3, namely, case (ii) corresponding to ρ ∈ (0, 1).
Case (iii) can be handled similarly, and in case (i) the angle of approach is of little interest since L2 can be
arbitrarily large or small.

First, we present an alternative expression for the set L = L(ε;R∗1, R
∗
2) given in (42) with R∗1 = I1(ρ) and

R∗1+R∗2 = I12(ρ) for some ρ ∈ (0, 1). It is easily seen that (L1, L2) ∈ L implies (L1+βD1(ρ), L2+βD2(ρ)) ∈ L,
where D2(ρ) := D12(ρ) − D1(ρ). It follows that L equals the set of all points lying below a straight line with
slope D2(ρ)

D1(ρ)
which intersects the boundary of Ψ−1(V(ρ), ε). That is,

L(ε;R∗1, R
∗
2) =

{
(L1, L2) : L2 ≤ aρL1 + bρ,ε

}
, (44)
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Fig. 4. Second-order coding rates in nats/
√

use with S1 = S2 = 1, ρ = 1
2

and ε = 0.1. The regions Ψ−1(V(ρ), ε) and L(ε;R∗
1, R

∗
2) are

to the bottom left of the boundaries. We also plot the line L2 = L1 tan θ∗ρ,ε, where θ∗ρ,ε is the unique angle θ for which the intersection of
the boundary of L(ε;R∗

1, R
∗
2) and the line L2 = L1 tan θ coincides with the boundary of Ψ−1(V(ρ), ε).

where

aρ :=
D2(ρ)

D1(ρ)
, and bρ,ε := inf

{
b :

(
L1, aρL1 + b

)
∈ Ψ−1(V(ρ), ε) for some L1 ∈ R

}
. (45)

We provide an example in Fig. 4 with the parameters S1 = S2 = 1, ρ = 1
2 and ε = 0.1. Since ε < 1

2 , the boundary
point (R∗1, R

∗
2) is approached from the inside. See Fig. 3, where for ε < 1

2 , the set Ψ−1(V, ε) only contains points
with negative coordinates.

Given the gradient aρ, the offset bρ,ε, and an angle θ (measured with respect to the horizontal axis), we seek the
pair (L1, L2) on the boundary of L(ε;R∗1, R

∗
2) such that L2 = L1 tan θ. It is easily seen that this point is obtained

by solving for the intersection of the line L2 = aρL1 + bρ,ε with L2 = L1 tan θ. The two lines coincide when

L1 =
bρ,ε

tan θ − aρ
, and L2 =

bρ,ε tan θ

tan θ − aρ
. (46)

In Fig. 4, we see that there is only a single angle θ∗ρ,ε ≈ 3.253 rads for which the point of intersection in (46) is also
on the boundary of Ψ−1(V(ρ), ε), yielding (L1, L2) ≈ (−0.920,−0.103). In other words, there is only one angle
for which coding with a fixed (not varying with n) input distribution N (0,V(ρ)) is optimal in the second-order
sense (i.e. for which the added term βD(ρ) in (42) is of no additional help and β = 0 is optimal). For all the
other angles, we should choose a non-zero coefficient β, which corresponds to choosing an input distribution which
varies with n.

Finally, in Fig. 5, we plot the norm of the vector of second-order rates [L1, L2]
T in (46) against θ, the angle of

approach. For ε < 1
2 , the point [L1, L2]

T may be interpreted as that corresponding to the “smallest backoff” from
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Fig. 5. Plot of
√
L2

1 + L2
2 against the angle of approach θ with the same parameters as in Fig. 4. The second-order rates L1, L2, as

functions of θ, are defined in (46). Here, π + arctan(aρ) ≈ 0.328 × (2π) and 2π + arctan(aρ) ≈ 0.828 × (2π) are the critical angles
where

√
L2

1 + L2
2 diverges.

the first-order optimal rates.1 Thus,
√
L2
1 + L2

2 is a measure of the total backoff. For ε > 1
2 , [L1, L2]

T corresponds
to the “largest addition” to the first-order rates. It is noted that the norm tends to infinity when the angle tends to
π + arctan(aρ) (from above) or 2π + arctan(aρ) (from below). This corresponds to an approach almost parallel
to the gradient at the point on the boundary parametrized by ρ. A similar phenomenon was observed for the
Slepian-Wolf problem [10].

V. CONCLUDING REMARKS

We have studied the second-order asymptotics (i.e. identified the optimal second-order coding rate region) of
the Gaussian MAC with DMS. There are two reasons as to why the analysis here is more tractable vis-à-vis finite
blocklength or second-order analysis for the the discrete memoryless MAC (DM-MAC) studied extensively in [10]–
[12], [16]–[18]. Gaussianity allows us to identify the boundary of the capacity region and associate each point on
the boundary with an input distribution parametrized by ρ. Because for the DM-MAC, one needs to take the convex
closure of the union over input distributions PX1,X2

to define the capacity region [1, Sec. 4.5], the boundary points
are more difficult to characterize. In addition, in the absence of the DMS assumption, one needs to ensure in a
converse proof (possibly related to the wringing technique of Ahlswede [21]) that the codewords pairs are almost
orthogonal. By leveraging on the DMS assumption, we circumvent this requirement.

For future investigations, we note that the Gaussian broadcast channel [1, Sec. 5.5] is a problem which is very
similar to the Gaussian MAC with DMS (both require superposition coding and each point on the boundary is
achieved by a unique input distribution). As such, we expect that some of the second-order analysis techniques
contained herein may be applicable to the Gaussian broadcast channel.

1There may be some imprecision in the use of the word “backoff” here as for angles in the second (resp. fourth) quadrant, L2 (resp. L1)
is positive. On the other hand, one could generally refer to “backoff” as moving in some inward direction (relative to the capacity region
boundary) even if it is in a direction where one of the second-order rates increases. The same goes for the term “addition”.
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VI. PROOF OF THEOREM 2: GLOBAL SECOND-ORDER RESULT

A. Converse Part

We first prove the outer bound in (34). The analysis is split into seven steps.
1) A Reduction from Maximal to Equal Power Constraints: Let Ceq(n, ε) be the (n, ε)-capacity region in the case

that (9) and (10) are equality constraints, i.e., ‖f1,n(m1,m2)‖22 = nS1 and ‖f2,n(m2)‖22 = nS2 for all (m1,m2).
We claim that

Ceq(n, ε) ⊂ C(n, ε) ⊂ Ceq(n+ 1, ε). (47)

The lower bound is obvious. The upper bound follows by noting that the decoder for the length-(n+ 1) code can
ignore the last symbol, which can be chosen to equalize the powers.

It follows from (47) that for the purpose of second-order asymptotics, Ceq(n, ε) and C(n, ε) are equivalent. This
argument was also used in [8, Lem. 39] and [9, Sec. XIII]. Henceforth, we assume that all codewords (x1,x2)
have empirical powers exactly equal to (S1, S2).

2) A Reduction from Average to Maximal Error Probability: Let Cmax(n, ε) be the (n, ε)-capacity region in the
case that, along with the replacements in the previous step, (11) is replaced by

max
m1∈[M1,n],m2∈[M2,n]

Pr
(
(M1,M2) 6= (M̂1, M̂2)

∣∣ (M1,M2) = (m1,m2)
)
≤ εn. (48)

That is, the average error probability is replaced by the maximal error probability. Here we show that C(n, ε) and
Cmax(n, ε) are equivalent for the purposes of second-order asymptotics, thus allowing us to focus on the maximal
error probability for the converse proof. It should be noted that this argument fails for the regular MAC [22].

Using similar arguments to [23, Sec 3.4.4], we will start with the average-error code, and use a standard
expurgation argument to obtain a maximal-error code having the same asymptotic rates and error probability.
Let εn(m1,m2) be the error probability given that the message pair (m1,m2) is encoded, and let

εn(m2) :=
1

M1,n

M1,n∑

m1=1

εn(m1,m2) (49)

be the error probability for message m2, averaged over M1.
Consider a sequence of codes with message sets M1,n and M2,n, having an error probability not exceeding

εn. Let M̃2,n contain the fraction 1√
n

of the messages m2 ∈ M2,n with the highest values of εn(m2) (here and
subsequently, we ignore rounding issues, since these do not affect the argument). It follows that εn(m2) ≤ εn

1− 1√
n

,

since otherwise the codewords not appearing in M̃2,n would contribute more than εn to the average error probability
of the original code, causing a contradiction.

Next, for each m2 ∈ M̃2,n, let M̃1,n(m2) contain the fraction 1√
n

of the messages m1 with the highest values
of εn(m1,m2). Since user 1 knows both messages, we may relabel the messages so that M̃1,n := M̃1,n(m2) is
the same for each m2. Repeating the above argument, we conclude that

εn(m1,m2) ≤
εn(m2)

1− 1√
n

≤ εn(
1− 1√

n

)2 = εn +O

(
1√
n

)
(50)

for all m1 ∈ M̃1,n and m2 ∈ M̃2,n. Moreover, we have by construction that

1

n
log
∣∣M̃j,n

∣∣ =
1

n
log
∣∣Mj,n

∣∣− 1

2

log n

n
(51)

for j = 1, 2. By absorbing the remainder terms in (50) and (51) into the third-order term g(ρ, ε, n) in (33), we see
that it suffices to prove the converse result for the maximal error probability.
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3) Correlation Type Classes: Define I0 := {0} and Ik := (k−1n , kn ], k ∈ [n], and let I−k := −Ik for k ∈ [n].
We see that the family {Ik : k ∈ [−n : n]} forms a partition of [−1, 1]. Consider the correlation type classes (or
simply type classes)

Tn(k) :=

{
(x1,x2) :

〈x1,x2〉
‖x1‖2‖x2‖2

∈ Ik
}

(52)

where k ∈ [−n : n], and 〈x1,x2〉 :=
∑n

i=1 x1ix2i is the standard inner product in Rn. The total number of type
classes is 2n+ 1, which is polynomial in n analogously to the case of discrete alphabets [24, Ch. 2].

We use an argument similar to that of Csiszár-Körner [24, Lem. 16.2] to perform a further reduction (along
with those in the first two steps) to codes for which all codeword pairs have the same type. Let the codebook
C := {(x1(m1,m2),x2(m2)) : m1 ∈ M1,n,m2 ∈ M2,n} be given; in accordance with the previous two steps,
we assume that it has codewords meeting the power constraints with equality, and maximal error probability not
exceeding εn. For each m2 ∈ M2,n, we can find a set M̃1,n(m2) ⊂ M1,n (re-using the notation of the previous
step) such that all pairs of codewords (x1(m1,m2),x2(m2)), m1 ∈ M̃1,n(m2) have the same type, say indexed
by k(m2) ∈ [−n : n], and

1

n
log
∣∣M̃1,n(m2)

∣∣ ≥ 1

n
log
∣∣M1,n(m2)

∣∣− log(2n+ 1)

n
, ∀m2 ∈M2,n. (53)

We may assume that all the sets M̃1,n(m2),m2 ∈ M2,n have the same cardinality; otherwise, we can re-
move extra codeword pairs from some sets M̃1,n(m2) and (53) will still be satisfied. We may also assume
(by relabeling if necessary) that M̃1,n := M̃1,n(m2) is the same for each m2. Now, we have a subcodebook
C̃1 := {(x1(m1,m2),x2(m2)) : m1 ∈ M̃1,n,m2 ∈ M2,n}, where for each m2, all the codeword pairs have the
same type and (53) is satisfied. Across the m2’s, there may be different types indexed by k(m2) ∈ [−n : n], but
there exists a dominant type indexed by k∗ ∈ {k(m2) : m2 ∈M2,n} and a set M̃2,n ⊂M2,n such that

1

n
log
∣∣M̃2,n

∣∣ ≥ 1

n
log
∣∣M2,n

∣∣− log(2n+ 1)

n
. (54)

As such, we have shown that there exists a subcodebook C̃12 := {(x1(m1,m2),x2(m2)) : m1 ∈ M̃1,n,m2 ∈ M̃2,n}
of constant type indexed by k∗ where the sum rate satisfies

1

n
log
∣∣M̃1,n × M̃2,n

∣∣ ≥ 1

n
log
∣∣M1,n ×M2,n

∣∣− 2 log(2n+ 1)

n
. (55)

The reduced code clearly has maximal error probability no higher than that of C. Combining this observation
with (54) and (55), we see that the converse part of Theorem 2 for fixed-type codes implies the same for general
codes, since the additional O

( logn
n ) factors in (54) and (55) can be absorbed into the third-order term g(ρ, ε, n).

Thus, in the remainder of the proof, we limit our attention to fixed-type codes. For each n, the type is indexed by
k ∈ [−n : n], and we define ρ̂ := k

n ∈ [−1, 1]. In some cases, we will be interested in sequences of such values,
in which case we will make the dependence on n explicit by writing ρ̂n.

4) A Verdú-Han-type Converse Bound for the Gaussian MAC with DMS: We now state a non-asymptotic converse
bound for the Gaussian MAC with DMS based on analogous bounds in Han’s work on the information spectrum
approach for the general MAC [25, Lem. 4] and in Boucheron-Salamatian’s work on the information spectrum
approach for the general broadcast channel with DMS [26, Lem. 2]. This result can be proved similarly to [25],
[26], so we omit its proof.

The bound only requires that the average error probability is no higher than εn, which is guaranteed by the fact
that the maximal error probability is no higher than εn. That is, the reduction to the maximal error probability
in Section VI-A2 was performed for the sole purpose of making the reduction to fixed types in Section VI-A3
possible.

Proposition 4. Fix a blocklength n ≥ 1, auxiliary output distributions QY|X2
and QY, and a constant γ > 0.

For any (n,M1,n,M2,n, S1, S2, εn)-code with codewords of fixed empirical powers S1 and S2 falling into a single
correlation type class Tn(k), there exist random vectors (X1,X2) with joint distribution PX1,X2

supported on
{(x1,x2) ∈ Tn(k) : ‖xj‖22 = nSj , j = 1, 2} such that

εn ≥ Pr(An ∪ Bn)− 2 exp(−nγ), (56)
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where

An :=

{
1

n
log

Wn(Y|X1,X2)

QY|X2
(Y|X2)

≤ 1

n
logM1,n − γ

}
(57)

Bn :=

{
1

n
log

Wn(Y|X1,X2)

QY(Y)
≤ 1

n
log
(
M1,nM2,n

)
− γ
}
, (58)

with Y | {X1 = x1,X2 = x2} ∼Wn(·|x1,x2).

There are several differences in Proposition 4 compared to [25, Lem. 4]. First, in our work, there are cost
constraints on the codewords, and thus the support of the input distribution PX1,X2

is specified to reflect this
constraint. Second, there are two (instead of three) events in the probability in (56) because the informed encoder f1,n
has access to both messages. Third, we can choose arbitrary output distributions QY|X2

and QY. This generalization
is analogous to the non-asymptotic converse bound by Hayashi and Nagaoka for classical-quantum channels [27,
Lem. 4]. The freedom to choose the output distribution is crucial in both our problem and [27].

5) Evaluation of the Verdú-Han Bound for ρ̂ ∈ (−1, 1): Recall from Sections VI-A1 and VI-A3 that the
codewords satisfy exact power constraints and belong to a single type class Tn(k). In this subsection, we consider
the case that ρ̂ := k

n ∈ (−1, 1), and we derive bounds which will be useful for sequences ρ̂n uniformly bounded
away from −1 and 1. In Section VI-A6, we present alternative bounds to handle the remaining cases.

We evaluate (56) for a single correlation type class parametrized by k. Let γ := logn
2n , yielding 2 exp(−nγ) = 2√

n
.

We choose the output distributions QY|X2
and QY to be the n-fold products of QY |X2

and QY , defined in (25)–(26)
respectively, with ρ̂ in place of ρ.

We now characterize the statistics of the first and second moments of j(x1i, x2i, Yi) in (27) for fixed sequences
(x1,x2) ∈ Tn(k). From Appendix A, these moments can be expressed as continuously differentiable functions
of the empirical powers 1

n‖x1‖22, 1
n‖x2‖22 and the empirical correlation coefficient 〈x1,x2〉

‖x1‖2‖x2‖2 . The former two
quantities are fixed due to the reduction in Section VI-A1, and the latter is within 1

n of ρ̂ by the assumption that
(x1,x2) ∈ Tn(k). Thus, Taylor expanding (A.6) and (A.12) in Appendix A, we obtain

∥∥∥∥∥E
[

1

n

n∑

i=1

j(x1i, x2i, Yi)

]
− I(ρ̂)

∥∥∥∥∥
∞

≤ ξ1
n

(59)

∥∥∥∥∥Cov
[

1√
n

n∑

i=1

j(x1i, x2i, Yi)

]
−V(ρ̂)

∥∥∥∥∥
∞

≤ ξ2
n

(60)

for some ξ1 > 0 and ξ2 > 0 which can taken to be independent of ρ̂ (since the corresponding derivatives are
uniformly bounded).

Let Rj,n := 1
n logMj,n for j = 1, 2, and let Rn := [R1,n, R1,n +R2,n]T . We have

Pr(An ∪ Bn) = 1− Pr(Acn ∩ Bcn) = 1− EX1,X2

[
Pr(Acn ∩ Bcn|X1,X2)

]
(61)

and in particular, using the definition of j(x1, x2, y) in (27) and the fact that QY|X2
and QY are product distributions,

Pr(Acn ∩ Bcn|x1,x2) = Pr

(
1

n

n∑

i=1

j(x1i, x2i, Yi) > Rn − γ1

)
(62)

≤ Pr

(
1

n

n∑

i=1

(
j(x1i, x2i, Yi)− E[j(x1i, x2i, Yi)]

)
> Rn − I(ρ̂)− γ1− ξ1

n
1

)
, (63)

where (63) follows from (59).
We are now in a position to apply the multivariate Berry-Esseen theorem [28], [29] (see Appendix B). The first

two moments are bounded according to (59)–(60), and in Appendix A we show that, upon replacing the given
(x1,x2) pair with a different pair yielding the same statistics of

∑n
i=1 j(x1i, x2i, Yi) if necessary (cf. Lemma 9),
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the required third moment is uniformly bounded (cf. Lemma 10). It follows that

Pr(Acn ∩ Bcn|x1,x2)

≤ Ψ

(
√
n
(
I1(ρ̂)+γ+

ξ1
n
−R1,n

)
,
√
n
(
I12(ρ̂)+γ+

ξ1
n
−(R1,n+R2,n)

)
;Cov

[
1√
n

n∑

i=1

j(x1i, x2i, Yi)

])
+
ψ(ρ̂)√
n
.

(64)

By Taylor expanding the continuously differentiable function (z1, z2,V) 7→ Ψ(z1, z2; V), using the approximation
in (60) and the fact that det(V(ρ̂)) > 0 for ρ̂ ∈ (−1, 1), we obtain

Pr(Acn ∩ Bcn|x1,x2) ≤ Ψ
(√
n
(
I1(ρ̂)−R1,n

)
,
√
n
(
I12(ρ̂)− (R1,n +R2,n)

)
; V(ρ̂)

)
+
η(ρ̂) log n√

n
. (65)

The remainder terms in (64) and (65) are dependent on ρ̂, so we denote them by ψ(ρ̂) and η(ρ̂). These remainder
terms satisfy ψ(ρ̂), η(ρ̂)→∞ as ρ̂→ ±1, since V(ρ̂) becomes singular as ρ̂→ ±1. Despite this non-uniformity,
we conclude from (56) and (65) that any (n, ε)-code with codewords in Tn(k) must, for large enough n, have rates
that satisfy

[
R1,n

R1,n +R2,n

]
∈ I(ρ̂) +

Ψ−1
(
V(ρ̂), ε+ 2√

n
+ η(ρ̂) logn√

n

)

√
n

. (66)

The following “continuity” lemma for ε 7→ Ψ−1(V, ε) is proved in Appendix C.

Lemma 5. Fix 0 < ε < 1 and a positive sequence λn = o(1). Let V be a non-zero positive semi-definite matrix.
There exists a function h(V, ε) such that

Ψ−1
(
V, ε+ λn) ⊂ Ψ−1

(
V, ε) + h(V, ε)λn 1. (67)

We conclude from Lemma 5 that

Ψ−1
(
V(ρ̂), ε+

2√
n

+
η(ρ̂) log n√

n

)
⊂ Ψ−1

(
V(ρ̂), ε

)
+
h(ρ̂, ε) log n√

n
1 (68)

for some function h(ρ̂, ε) := h(V(ρ̂), ε) which diverges only as ρ̂→ ±1. Uniting (66) and (68), we deduce that
[

R1,n

R1,n +R2,n

]
∈ I(ρ̂) +

Ψ−1
(
V(ρ̂), ε

)
√
n

+
h(ρ̂, ε) log n

n
1. (69)

6) Evaluation of the Verdú-Han Bound with ρ̂n → ±1: Here we consider a sequence of codes of a single type
indexed by kn such that ρ̂n := kn

n → 1. The case ρ̂n → −1 is handled similarly, and the details are thus omitted.
Our aim is to show that

[
R1,n

R1,n +R2,n

]
∈ I(ρ̂n) +

Ψ−1
(
V(ρ̂n), ε

)
√
n

+ o

(
1√
n

)
1. (70)

The following lemma states that as ρ̂n → 1, the set Ψ−1(V(ρ̂n), ε
)

in (70) can be approximated by Ψ−1(V(1), ε
)
,

which is a simpler rectangular set. The proof of the lemma is provided in Appendix D.

Lemma 6. Fix 0 < ε < 1 and let ρ̂n → 1. There exist positive sequences an, bn = Θ((1 − ρ̂n)1/4) and cn =
Θ((1− ρ̂n)1/2) satisfying

[
0√

V12(1)Φ−1(ε+ an)

]−
− bn1 ⊂ Ψ−1(V(ρ̂n), ε) ⊂

[
0√

V12(1)Φ−1(ε)

]−
+ cn1. (71)

The down-set notation [v]− is defined in (40).

From the inner bound in Lemma 6, in order to show (70) it suffices to show
[

R1,n

R1,n +R2,n

]
≤ I(ρ̂n) +

√
V12(1)

n

[
0

Φ−1(ε)

]
+ o

(
1√
n

)
1, (72)
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where we absorbed the sequences an, bn into the o
(

1√
n

)
term.

We return to the step in (63), which when combined with the Verdú-Han bound (with γ := logn
2n ) yields for some

(x1,x2) ∈ Tn(k) that

εn ≥ 1− Pr

(
1

n

n∑

i=1

(
j(x1i, x2i, Yi)− E[j(x1i, x2i, Yi)]

)
> Rn − I(ρ̂n)− γ1− ξ1

n
1

)
− 2√

n
(73)

≥ max

{
Pr

(
1

n

n∑

i=1

(
j1(x1i, x2i, Yi)− E[j1(x1i, x2i, Yi)]

)
≤ R1,n − I1(ρ̂n)− γ − ξ1

n

)
,

Pr

(
1

n

n∑

i=1

(
j12(x1i, x2i, Yi)− E[j12(x1i, x2i, Yi)]

)
≤ R1,n +R2,n − I12(ρ̂n)− γ − ξ1

n

)}
− 2√

n
. (74)

From (60) and the assumption that ρ̂n → 1, the variance of
∑n

i=1 j12(x1i, x2i, Yi) equals n(V12(1)+o(1)). Since
V12(1) > 0, we can treat the second term in the maximum in (74) in an identical fashion to the single-user setting
[7], [8] to obtain the second of the element-wise inequalities in (72). It remains to prove the first, i.e. to show that
no Θ

(
1√
n

)
addition to R1,n is possible for ε ∈ (0, 1). We will make use of the identities

I1(ρ̂n) = Θ(1− ρ̂n) (75)

V1(ρ̂n) = Θ(1− ρ̂n) (76)

which follow since I1(1) = V1(1) = 0, and by applying Taylor expansions in the same way as (59)–(60) (see also
Appendix A). It is easily verified that the corresponding derivatives (e.g. ∂I1

∂ρ ) at ρ = 1 are strictly negative, hence
justifying the use of Θ(·) instead of O(·) in (75)–(76).

We treat the cases 1 − ρ̂n = ω
(
1
n

)
and 1 − ρ̂n = O

(
1
n

)
separately. In the former case, we combine (59)–(60)

and (75)–(76) to conclude that

Ĩ1,n := E

[
1

n

n∑

i=1

j1(x1i, x2i, Yi)

]
= Θ (1− ρ̂n) , (77)

Ṽ1,n := Var

[
1√
n

n∑

i=1

j1(x1i, x2i, Yi)

]
= Θ (1− ρ̂n) . (78)

Furthermore, we show in Appendix A that, upon replacing the given (x1,x2) pair with a different pair yielding
the same statistics of

∑n
i=1 j1(x1i, x2i, Yi) if necessary (cf. Lemma 9), we have (cf. Lemma 11)

T̃1,n :=

n∑

i=1

E
[∣∣∣ 1√

n

(
j1(x1i, x2i, Yi)− E[j1(x1i, x2i, Yi)]

)∣∣∣
3
]

= O

(
1− ρ̂n√

n

)
. (79)

Thus, an application of the (univariate) Berry-Esseen theorem [30, Sec. XVI.5] yields

Pr

(
1

n

n∑

i=1

(
j1(x1i, x2i, Yi)− E[j1(x1i, x2i, Yi)]

)
≤ R1,n − I1(ρ̂n)− γ − ξ1

n

)

≥ Φ



√
n
(
R1,n − I1(ρ̂n)− γ − ξ1

n

)
√
Ṽ1,n


− 6 T̃1,n

Ṽ
3/2
1,n

. (80)

We see from (78)–(79) that the remainder term above scales as O
(
[n(1 − ρ̂n)]−1/2

)
. Since it is assumed that

1− ρ̂n = ω
(
1
n

)
, this remainder term vanishes. Thus, combining (80) with (74) and the fact that γ = O

( logn
n

)
, and

inverting the relationship between rate and error probability, we obtain

R1,n ≤ I1(ρ̂n) +

√
Ṽ1,n
n

Φ−1(ε) + o

(
1√
n

)
. (81)
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Furthermore, ρ̂n → 1 implies that Ṽ1,n → 0, and hence we have for any ε ∈ (0, 1) that

R1,n ≤ I1(ρ̂n) + o

(
1√
n

)
, (82)

thus yielding (72) and hence (70).
It remains to show that (82) also holds when 1 − ρ̂n = O

(
1
n

)
. In this case, we can combine (60) and (76) to

conclude that the variance of
∑n

i=1 j1(x1i, x2i, Yi) is O(1), and we thus have from Chebyshev’s inequality that

Pr

(
1

n

n∑

i=1

(
j1(x1i, x2i, Yi)− E[j1(x1i, x2i, Yi)]

)
≤ c√

n

)
→ 1 (83)

for all c > 0. Substituting (83) into (74) and taking c→ 0 yields (82), as desired.
7) Completion of the Proof: Combining (69) and (70), we conclude that for any sequence of codes with error

probability not exceeding ε ∈ (0, 1), we have for some sequence ρ̂n ∈ [−1, 1] that
[

R1,n

R1,n +R2,n

]
∈ I(ρ̂n) +

Ψ−1
(
V(ρ̂n), ε

)
√
n

+ g(ρ̂n, ε, n)1, (84)

where g(ρ, ε, n) satisfies the conditions in the theorem statement. Specifically, the first condition follows from (69)
(with ḡ(ρ, ε, n) := h(ρ, ε) lognn ), and the second from (70) (with ḡ(ρ, ε, n) := o

(
1√
n

)
). This concludes the proof of

the global converse.

B. Direct Part

We now prove the inner bound in (34). At a high level, we modify the key ideas in the analysis of the cost-
constrained ensemble by Scarlett et al. [31] so that they are applicable to superposition codes. This approach can
be applied to input-constrained MACs with DMS in significantly greater generality than the Gaussian case.

1) Random-Coding Ensemble: For user j = 1, 2, we introduce K auxiliary cost functions {ak(x1, x2)}Kk=1,
which are assumed to be arbitrary for now. The ensemble will be defined in such a way that, with probability one,
each codeword pair falls into the set

Dn :=

{(
x1,x2

)
: ‖x1‖22 ≤ nS1, ‖x2‖22 ≤ nS2,

∣∣∣∣
1

n

n∑

i=1

ak(x1i, x2i)− E[ak(X1, X2)]

∣∣∣∣ ≤
δ

n
, ∀ k ∈ [K]

}
, (85)

where δ is a positive constant, and (X1, X2) are jointly Gaussian with a covariance matrix of the form given in
(20). Roughly speaking, the set Dn contains codewords satisfying the power constraints such that the empirical
expectations of the K auxiliary cost functions are δ/n-close to the true expectations.

Before defining the ensemble, we present the following straightforward variation of [31, Prop. 1]. We make use
of the fact that ‖x‖22 =

∑n
i=1 x

2
i , i.e. the power constraints are additive in the same way as the auxiliary costs.

Proposition 7. Fix ρ ∈ [0, 1], and let (X′1,X
′
2) be jointly distributed according to the n-fold product distribution of

PX1,X2
∼ N (0,Σ(ρ)) (see (20)), i.e. (X′1,X

′
2) ∼

∏n
i=1 PX1,X2

(x′1i, x
′
2i). If E[ak(X1, X2)

2] <∞ for all k ∈ [K],
then there exists a choice of δ > 0 such that

Pr
(
(X′1,X

′
2) ∈ Dn

)
≥ ψ(n), (86)

where ψ(n) = Ω(n−(K+2)/2).

Proof: In the case that the power constraints are absent from Dn, this is a special case of the statement of [31,
Prop. 1], which was proved using the following steps: (i) Find a subset of K ′ ≤ K linearly independent auxiliary
cost functions, linear combinations of which can be used to construct the remaining K −K ′ functions; (ii) Apply
a local limit theorem (e.g. [32]) to bound the probability that all K constraints in Dn are satisfied. The second
step relies on the constraints being two-sided, i.e. allowing for deviations on both sides of the mean in Dn. This is
false in the presence of the power constraints. However, for ρ ∈ [0, 1) we have det(Σ(ρ)) > 0, thus ensuring that
the functions x21 and x22 can be included in the set of K ′ ≤ K + 2 linearly independent functions, and ensuring the
validity of the second step above. For the remaining case ρ = 1, the codewords X′1 and X′2 are scalar multiples of
each other, and thus the power constraints for the two users are equivalent (i.e. one implies the other). We can thus
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remove one of the power constraints from Dn without changing the statement of the proposition, and the remaining
constraint can be included in the set of K ′ ≤ K + 1 linearly independent functions. This concludes the proof.

We now define the random-coding ensemble. We use superposition coding, in which the codewords are generated
according to

{(
X2(m2), {X1(m1,m2)}M1,n

m1=1

)}M2,n

m2=1

∼
M2,n∏

m2=1

(
PX2

(x2(m2))

M1,n∏

m1=1

PX1|X2
(x1(m1,m2)|x2(m2))

)
(87)

for some codeword distributions PX2
and PX1|X2

. These distributions will be chosen such that all codewords fall
into the set Dn with probability one. The auxiliary costs will be chosen to satisfy the assumptions of Proposition 7,
and we assume that δ is chosen such that (86) holds, in accordance with the proposition statement.

Let the i.i.d. codewords (X′1,X
′
2) be defined as in Proposition 7. Defining the set

D2,n :=

{
x2 : Pr

(
(X′1,x2) ∈ Dn

∣∣X′2 = x2

)
≥ 1

2
ψ(n)

}
, (88)

the codeword distributions are given by

PX2
(x2) =

1

µ2,n

n∏

i=1

PX2
(x2i)1

{
x2 ∈ D2,n

}
, (89)

PX1|X2
(x1|x2) =

1

µ1,n(x2)

n∏

i=1

PX1|X2
(x1i|x2i)1

{
(x1,x2) ∈ Dn

}
, (90)

where µ2,n and µ1,n(x2) are normalizing constants. We see that X2 ∈ D2,n with probability one, and the definition
of D2,n in (88) implies that µ1,n(x2) ≥ 1

2ψ(n) = Ω(n−(K+2)/2) for all x2 ∈ D2,n. It will prove useful to show
that we similarly have µ2,n = Ω(n−(K+2)/2). To see this, we write (86) as

µ2,n Pr
(
(X′1,X

′
2) ∈ Dn

∣∣X′2 ∈ D2,n

)
+ (1− µ2,n) Pr

(
(X′1,X

′
2) ∈ Dn

∣∣X′2 /∈ D2,n

)
≥ ψ(n). (91)

Upper bounding the first probability by one and the second according to (88), we obtain

µ2,n +
1

2
ψ(n) ≥ ψ(n), (92)

where we have also used 1 − µ2,n ≤ 1. It follows that µ2,n ≥ 1
2ψ(n) = Ω(n−(K+2)/2), as desired. Finally, upper

bounding the indicator functions in (89)–(90) by one, we obtain

PX1,X2
(x1,x2) ≤

4

ψ(n)2

n∏

i=1

PX1,X2
(x1i, x2i). (93)

2) A Feinstein-type Achievability Bound for the MAC with DMS: We now state a non-asymptotic achievability
based on an analogous bound for the MAC [25, Lem. 3]. This bound can be considered as a dual of Proposition 4.
Define

PX1|X2
Wn(y|x2) :=

∫

Rn

PX1|X2
(x1|x2)W

n(y|x1,x2) dx1, (94)

PX1,X2
Wn(y) :=

∫

Rn

∫

Rn

PX1,X2
(x1,x2)W

n(y|x1,x2) dx1 dx2 (95)

to be output distributions induced by an input distribution PX1,X2
and the channel Wn. We have the following

proposition, whose proof is omitted since it is uses standard arguments (e.g. see [14, Thm. 4]).

Proposition 8. Fix a blocklength n ≥ 1, random vectors (X1,X2) with joint distribution PX1,X2
such that ‖X1‖22 ≤

nS1 and ‖X2‖22 ≤ nS2 almost surely, auxiliary output distributions QY|X2
and QY, and a constant γ > 0. Then

there exists an (n,M1,n,M2,n, S1, S2, εn)-code for which

εn ≤ Pr(Fn ∪ Gn) + Λ1 exp(−nγ) + Λ12 exp(−nγ), (96)
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where

Λ1 := sup
x2,y

d(PX1|X2
Wn)(y|x2)

dQY|X2
(y|x2)

, Λ12 := sup
y

d(PX1,X2
Wn)(y)

dQY(y)
, (97)

and

Fn :=

{
1

n
log

Wn(Y|X1,X2)

QY|X2
(Y|X2)

≤ 1

n
logM1,n + γ

}
(98)

Gn :=

{
1

n
log

Wn(Y|X1,X2)

QY(Y)
≤ 1

n
log
(
M1,nM2,n

)
+ γ

}
(99)

with Y | {X1 = x1,X2 = x2} ∼Wn(·|x1,x2).

The main difference between (96) and traditional Feinstein-type threshold decoding bounds (e.g. [25, Lem. 3], [33,
Lem. 1]) is that we have the freedom to choose arbitrary output distributions QY|X2

and QY; this comes at the cost
of introducing the multiplicative factors Λ1 and Λ12 which depend on the maximum value of the Radon-Nikodym
derivatives in (97). These multiplicative factors result from a standard change of measure argument.

3) Analysis of the Random-Coding Error Probability for fixed ρ ∈ [0, 1): We now use Proposition 8 with the
codeword input distribution PX1,X2

in (89)-(90). By construction, the probability of either codeword violating the
power constraint is zero. We choose the output distributions QY|X2

:= (PX1|X2
W )n and QY := (PX1,X2

W )n to be
of the convenient product form. As such, by (88), (90) and (93), we can choose Λ1 = 2ψ(n)−1 and Λ12 = 4ψ(n)−2

in (97). Hence,

εn ≤ 1− Pr

(
1

n

n∑

i=1

j(X1i, X2i, Yi) > Rn + γ1

)
+

2 exp(−nγ)

ψ(n)
+

4 exp(−nγ)

ψ(n)2
, (100)

where the information density vector j(x1, x2, y) is defined with respect to PX1|X2
W (y|x2) and PX1,X2

W (y), which
coincide with QY |X2

and QY in (25)–(26). Choosing

γ := max

{
− 1

n
log

(
ψ(n)√
n

)
,− 1

n
log

(
ψ(n)2√

n

)}
, (101)

we notice that the sum of the third and fourth terms in (100) is upper bounded by 6√
n

. The fact that ψ(n) =

Ω(n−(K+2)/2) (see Proposition 7) implies that γ = O
( logn

n

)
, and we obtain

εn ≤ max
(x1,x2)∈Dn

1− Pr

(
1

n

n∑

i=1

j(x1i, x2i, Yi) > Rn + γ1

)
+

6√
n
. (102)

We now make use of the key idea proposed in [31], namely, choosing the auxiliary costs in terms of the moments
of j(x1, x2, Y ) in order to ensure that the Berry-Esseen theorem can be applied to (102). We define

j(x1, x2) := E[j(x1, x2, Y )], (103)

v(x1, x2) := Cov[j(x1, x2, Y )], (104)

t(x1, x2) := E
[∥∥j(x1, x2, Y )− E[j(x1, x2, Y )]

∥∥3
2

]
, (105)

where the expectations and covariance are taken with respect to W (·|x1, x2). We set K = 6 and let the auxiliary
costs equal the entries of the vectors and matrix in (103)–(105) (2 entries for j(x1, x2), 3 unique entries for the
symmetric matrix v(x1, x2) and 1 entry for the scalar t(x1, x2)).2 The assumptions of Proposition 7 are satisfied,

2An alternative approach would be to set K = 3 and choose the system costs a1(x1, x2) = x21, a2(x1, x2) = x22 and a3(x1, x2) = x1x2.
Under these choices, all codeword pairs have roughly the same powers and empirical correlations, thus allowing us to bound the moments
associated with

∑n
i=1 j(x1i, x2i, Yi) similarly to Section VI-A. Furthermore, the uniform bound on the third absolute moment given in

Lemma 10 in Appendix A can be used in place of the auxiliary cost corresponding to t(x1, x2). On the other hand, the approach of choosing
the auxiliary costs according to (103)–(105) remains applicable in significantly greater generality beyond the Gaussian setting. See [31] for
more details.
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since all moments of a Gaussian random variable are finite. We have from (28)–(29), (85) and (103)–(104) that∥∥∥∥∥E
[

1

n

n∑

i=1

j(x1, x2, Yi)

]
− I(ρ)

∥∥∥∥∥
∞

≤ δ

n
, (106)

∥∥∥∥∥Cov
[

1√
n

n∑

i=1

j(x1, x2, Yi)

]
−V(ρ)

∥∥∥∥∥
∞

≤ δ

n
(107)

for all (x1,x2) ∈ Dn, where the expectations and covariance are taken with respect to Wn(·|x1,x2). Similarly,
defining T (ρ) := E[t(X1, X2)], we have from (85) and (105) that

∣∣∣∣∣
1

n

n∑

i=1

E
[∥∥∥j(x1i, x2i, Yi)− E[j(x1i, x2i, Yi)]

∥∥∥
3

2

]
− T (ρ)

∣∣∣∣∣ ≤
δ

n
. (108)

Thus, by applying the multivariate Berry-Esseen theorem [28], [29] (see Appendix B) to (102) and performing
Taylor expansions similarly to Section VI-A5, we obtain

εn ≤ 1−Ψ
(√

n
(
I1(ρ)−R1,n

)
,
√
n
(
I12(ρ)− (R1,n +R2,n)

)
; V(ρ)

)
+
ζ(ρ, δ) log n√

n
, (109)

where ζ(ρ, δ) is a function depending only on ρ and δ. By inverting the relationship between the rates and the
error probability similarly to Section VI-A5, we obtain the desired result for any given ρ ∈ [0, 1), i.e. the first part
of the theorem.

4) Analysis of the Random-Coding Error Probability for ρn → 1: In order to prove the second part of the
theorem, we use the cost-constrained ensemble with ρ varying with n, namely ρn → 1. Similarly to (72), it suffices
to show the achievability of (R1,n, R2,n) satisfying

[
R1,n

R1,n +R2,n

]
≥ I(ρn) +

√
V12(1)

n

[
0

Φ−1(ε)

]
+ o

(
1√
n

)
1, (110)

rather than the equivalent form given by (84). See the outer bound in Lemma 6.
We set K = 7 and choose the first five auxiliary costs to be the same as those above, while letting a6 and a7

equal the two entries of

t(x1, x2) := E
[∣∣j(x1, x2, Y )− E[j(x1, x2, Y )]

∣∣3
]
, (111)

where the absolute value is applied element-wise. The reasons for the different choices of auxiliary costs here
(compared to the case of fixed ρ ∈ [0, 1)) are to obtain a sharper bound on the third absolute moment corresponding
to
∑n

i=1 j1(x1i, x2i, Yi), and since we will use two applications of the scalar Berry-Esseen theorem instead of one
application of the vector version.

Defining

T(ρ) =

[
T1(ρ)
T12(ρ)

]
:= E[t(X1, X2)], (112)

we have similarly to (106)–(108) that∥∥∥∥∥
1

n

n∑

i=1

E
[∣∣∣j(x1i, x2i, Yi)− E[j(x1i, x2i, Yi)]

∣∣∣
3
]
−T(ρ)

∥∥∥∥∥
∞

≤ δ

n
. (113)

We have I1(1) = V1(1) = T1(1) = 0, and the behaviors of I1(ρn) and V1(ρn) as ρn → 1 are characterized by
(75)–(76). Furthermore, Lemma 12 in Appendix A states that

T1(ρn) = O(1− ρn) (114)

analogously to (75)–(76) (except with O(·) in place of Θ(·)).
Since Proposition 7 holds for all ρ ∈ [0, 1], it also holds for ρ varying within this range, and (102) remains true

with γ = O
( logn

n

)
. Applying the union bound to (102), we obtain

εn ≤ Pr

(
1

n

n∑

i=1

j1(x1i, x2i, Yi) ≤ R1,n + γ

)
+ Pr

(
1

n

n∑

i=1

j1(x1i, x2i, Yi) ≤ R1,n +R2,n + γ

)
+

6√
n
. (115)
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for some (x1,x2) ∈ Dn The subsequent arguments are similar to Section VI-A6, so we only provide an outline.
We treat the cases 1− ρn = ω

(
1
n

)
and 1− ρn = O

(
1
n

)
separately. For the former, we fix a small c > 0 and choose

R1,n = I1(ρn)− c√
n
− γ. (116)

Using the bounds in (106)–(107) and (113), and applying the (scalar) Berry-Esseen theorem, we have similarly
to (80) that

Pr

(
1

n

n∑

i=1

j1(x1i, x2i, Yi) ≤ R1,n + γ

)
≤ Φ


 − c√

n
+O

( logn
n

)
√

1
n

(
V1(ρn) +O

(
1
n

))


+ o(1), (117)

where V1(ρn) = ω
(
1
n

)
, and the remainder term is o(1) due to (76) and (114). Since ρn → 1, we see that V1(ρn)→ 0,

and hence the right-hand side of (117) vanishes for any c > 0. Thus, applying the Berry-Esseen theorem to (115)
and inverting the relationship between the rates and error probability, we obtain the following bound on the sum
rate:

R1,n +R2,n ≥ I12(ρn) +

√
V12(1)

n
Φ−1(ε) + o

(
1√
n

)
. (118)

Combining (116) and (118), we obtain (110) upon taking c→ 0.
Using (106)–(107) and applying Chebyshev’s inequality similarly to (83), we see that the left-hand side of (117)

also vanishes for any c > 0 in the case that 1− ρn = O
(
1
n

)
. It follows that (110) remains true for this case, thus

completing the proof of the second part of Theorem 2.

VII. PROOF OF THEOREM 3: LOCAL SECOND-ORDER RESULT

A. Converse Part

We now present the proof of the converse part of Theorem 3.
1) Proof for case (i) (ρ = 0): To prove the converse part for case (i), it suffices to consider the most optimistic

case, namely M2,n = 1 (i.e. no information is sent by the uninformed user). From the single-user dispersion result
given in [4], [8] (cf. (4)), the number of messages for user 1 must satisfy

logM1,n ≤ nI1(0) +
√
nV1(0)Φ−1(ε) + o(

√
n), (119)

thus proving the converse part of (41).
2) Establishing The Convergence of ρn to ρ: Fix a correlation coefficient ρ ∈ (0, 1], and consider any sequence

of (n,M1,n,M2,n, S1, S2, εn)-codes for the Gaussian MAC with DMS satisfying (15). Let us consider the associated
rates {(R1,n, R2,n)}n≥1, where Rj,n = 1

n logMj,n for j = 1, 2. As required by Definition 4, we suppose that these
codes satisfy

lim inf
n→∞

Rj,n ≥ R∗j , (120)

lim inf
n→∞

√
n
(
Rj,n −R∗j

)
≥ Lj , j = 1, 2, (121)

lim sup
n→∞

εn ≤ ε (122)

for some (R∗1, R
∗
2) on the boundary parametrized by ρ, i.e. R∗1 = I1(ρ) and R∗1 + R∗2 = I12(ρ). The first-order

optimality condition in (120) is not explicitly required by Definition 4, but it can easily be seen that (121), which
is required by Definition 4, implies (120). Letting Rn := [R1,n, R1,n +R2,n]T , we have from the global converse
bound in (34) that there exists a sequence {ρn}n≥1 ⊂ [−1, 1] such that

Rn ∈ I(ρn) +
Ψ−1(V(ρn), ε)√

n
+ g(ρn, ε, n)1. (123)

Although g(ρn, ε, n) depends on ρn, we know from Theorem 2 that it is o
(

1√
n

)
for both ρn → ±1 and ρn bounded

away from ±1. It follows that

Rn ∈ I(ρn) +
Ψ−1(V(ρn), ε)√

n
+ o

(
1√
n

)
1 (124)
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for all sequences {ρn}n≥1. We claim that this result implies that ρn converges to ρ. Indeed, since the boundary
of the capacity region is curved and uniquely parametrized by ρ for ρ ∈ (0, 1], ρn 6→ ρ implies for some δ > 0
and for all sufficiently large n that either I1(ρn) ≤ I1(ρ) − δ or I12(ρn) ≤ I12(ρ) − δ. It follows from (124) that
R1,n ≤ I1(ρn)+ δ

2 and R1,n+R2,n ≤ I12(ρn)+ δ
2 for n large enough. As such, we deduce that R1,n ≤ I1(ρ)− δ

2 or
R1,n +R2,n ≤ I12(ρ)− δ

2 for all sufficiently large n. This, in turn, contradicts the first-order optimality conditions
in (120).

3) Establishing The Convergence Rate of ρn to ρ: Because each entry of I(ρ) is twice continuously differentiable,
a Taylor expansion yields

I(ρn) = I(ρ) + D(ρ)(ρn − ρ) +O
(
(ρn − ρ)2

)
1, (125)

where D(ρ) is the derivative of I defined in (37). In the same way, since each entry of V(ρ) is continuously
differentiable in ρ, we have

‖V(ρn)−V(ρ)‖∞ = O(ρn − ρ). (126)

We claim that these expansions, along with (124), imply that

Rn ∈ I(ρ) + D(ρ)(ρn − ρ) +
Ψ−1(V(ρ), ε)√

n
+

[
o

(
1√
n

)
+O

(
(ρn − ρ)2

)
+O

(
(ρn − ρ)1/2√

n

)]
1. (127)

The final term in the square parentheses results from the outer bound in Lemma 6 for the case ρ = 1. For ρ ∈ (0, 1)
a standard Taylor expansion yields (127) with the last term replaced by O

(ρn−ρ√
n

)
, and it follows that (127) holds

for all ρ ∈ (0, 1].
We treat two cases separately: (I) ρn− ρ = O( 1√

n
), and (II) ρn− ρ = ω( 1√

n
). We first show that Case (II) is not

of interest in our study of local second-order coding rates (Definition 4). If Case (II) holds, intuitively in (127),
1√
n

Ψ−1(V(ρ), ε) is dominated by D(ρ)(ρn − ρ) and hence, the second-order term scales as ω( 1√
n

) instead of the
desired Θ( 1√

n
). To be more precise, because

Ψ−1(V(ρ), ε) ⊂
[√

V1(ρ)Φ−1(ε)√
V12(ρ)Φ−1(ε)

]−
, (128)

the bound in (127) implies that Rn must satisfy

Rn ∈ I(ρ) + D(ρ)(ρn − ρ) +
1√
n

[√
V1(ρ)Φ−1(ε)√
V12(ρ)Φ−1(ε)

]−
+ o(ρn − ρ)1. (129)

In other words, (127) and ρn − ρ = ω( 1√
n

) imply that Rn must satisfy

Rn ≤ I(ρ) + D(ρ)(ρn − ρ) + o(ρn − ρ)1. (130)

Since the first entry of D(ρ) is negative and the second entry is positive, (130) states that L1 = +∞ (i.e. a large
addition to R∗1) only if L1 +L2 = −∞ (i.e. a large backoff from R∗1 +R∗2), and L1 +L2 = +∞ only if L1 = −∞.
This is due the fact that we consider second-order terms scaling as Θ

(
1√
n

)
. Thus, only Case (I) is of interest, i.e.

ρn − ρ = O
(

1√
n

)
.

4) Completing the Proof for Case (ii) (ρ ∈ (0, 1)): Assuming now that ρn − ρ = O( 1√
n

), it follows that
τn :=

√
n(ρn−ρ) is a bounded sequence. By the Bolzano-Weierstrass theorem [20, Thm. 3.6(b)], {τn}n≥1 contains

a convergent subsequence {τnk
}k≥1. Fix any convergent subsequence {τnk

}k≥1 and let the limit of this subsequence
be β ∈ R, i.e. β := limk→∞ τnk

. Then, for the blocklengths indexed by nk, we know from (127) that
√
nk
(
Rnk

− I(ρ)
)
∈ βD(ρ) + Ψ−1(V(ρ), ε) + o(1) 1, (131)

where the o(1) term combines the o
(

1√
n

)
term in (127) and the deviation (τnk

− β) max{−D1(ρ), D12(ρ)}. By
referring to the second-order optimality condition in (121), and applying the definition of the limit inferior in [20,
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Def. 3.16], we know that every convergent subsequence of {Rj,n}n≥1 has a subsequential limit that satisfies
limk→∞

√
nk
(
Rj,nk

−R∗j ) ≥ Lj for j = 1, 2. In other words, for all γ > 0, there exist an integer K1 such that

√
nk
(
R1,nk

− I1(ρ)
)
≥ L1 − γ (132)

√
nk
(
R1,nk

+R1,nk
− I12(ρ)

)
≥ L1 + L2 − 2γ (133)

for all k ≥ K1. Thus, we may lower bound each component in the vector on the left of (131) with L1 − γ and
L1 + L2 − 2γ. There also exists an integer K2 such that the o(1) terms are upper bounded by γ for all k ≥ K2.
We conclude that any pair of (ε,R∗1, R

∗
2)-achievable second-order coding rates (L1, L2) must satisfy

[
L1 − 2γ

L1 + L2 − 3γ

]
∈
⋃

β∈R

{
βD(ρ) + Ψ−1(V(ρ), ε)

}
. (134)

Finally, since γ > 0 is arbitrary, we can take γ ↓ 0, thus completing the converse proof for case (ii).
5) Completing the Proof for Case (iii) (ρ = 1): The case ρ = 1 is handled in essentially the same way as

ρ ∈ (0, 1), so we only state the differences. Since β represents the difference between ρn and ρ, and since ρn ≤ 1,
we should only consider the case that β ≤ 0. Furthermore, for ρ = 1 the set Ψ−1(V(ρ), ε) can be written in a
simpler form; see Lemma 6. Using this form, we readily obtain (43).

B. Direct Part

We obtain the local result from the global result using a similar (yet simpler) argument to the converse part in
Section VII-A. For fixed ρ ∈ [0, 1] and β ∈ R, let

ρn := ρ+
β√
n
, (135)

where we require β ≥ 0 (resp. β ≤ 0) when ρ = 0 (resp. ρ = 1). By Theorem 2, we can achieve (R1,n, R2,n)
satisfying

Rn ∈ I(ρn) +
Ψ−1(V(ρn), ε)√

n
+ o

(
1√
n

)
1. (136)

Substituting (135) into (136) and performing Taylor expansions in an identical fashion to the converse part (cf. the
argument from (125) to (127)), we obtain

Rn ∈ I(ρ) +
βD(ρ)√

n
+

Ψ−1(V(ρ), ε)√
n

+ o

(
1√
n

)
1. (137)

We immediately obtain the desired result for case (ii) where ρ ∈ [0, 1). We also obtain the desired result for case
(iii) where ρ = 1 using the alternative form of Ψ−1(V(1), ε) (see Lemma 6), similarly to the converse proof.

For case (i), we substitute ρ = 0 into (38) and (39) to obtain D(ρ) = [0 D12(ρ)]T with D12(ρ) > 0. Since β
can be arbitrarily large, it follows from (137) that L2 can take any real value. Furthermore, the set Ψ−1(V(0), ε)
contains vectors with a first entry arbitrarily close to

√
V1(0)Φ−1(ε) (provided that the other entry is sufficiently

negative), and we thus obtain (41).

APPENDIX A
MOMENTS OF THE INFORMATION DENSITY VECTOR

Let ρ ∈ [−1, 1] be given, and recall the definition of the information density vector in (27), and the choices of
QY |X2

and QY in (25)–(26). For a given pair of sequences (x1,x2), form the random vector

An :=
1√
n

n∑

i=1

j(x1i, x2i, Yi), (A.1)
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where Yi|{X1 = x1i, X2 = x2i} ∼W (·|x1i, x2i). Define the constants α := S1(1− ρ2), ϑ := S1 + S2 + 2ρ
√
S1S2

and κ := ρ
√
S1/S2. Then, it can be verified that

j1(x1, x2, Y ) =
1

2
log(1 + α)− Z2

2
+

(x1 − κx2 + Z)2

2(1 + α)
=
−αZ2 + 2(x1 − κx2)Z

2(1 + α)
+ f1(x1, x2), (A.2)

j12(x1, x2, Y ) =
1

2
log(1 + ϑ)− Z2

2
+

(x1 + x2 + Z)2

2(1 + ϑ)
=
−ϑZ2 + 2(x1 + x2)Z

2(1 + ϑ)
+ f12(x1, x2), (A.3)

where Z := Y − x1 − x2 ∼ N (0, 1) and f1(x1, x2) and f12(x1, x2) are some deterministic functions that will not
affect the covariance matrix. Taking the expectation, we obtain

E
[
j1(x1, x2, Y )

]
=

1

2
log(1 + α)− 1

2
+

1 + (x1 − κx2)2
2(1 + α)

=
1

2
log(1 + α) +

(x1 − κx2)2 − α
2(1 + α)

, (A.4)

E
[
j12(x1, x2, Y )

]
=

1

2
log(1 + ϑ)− 1

2
+

1 + (x1 + x2)
2

2(1 + ϑ)
=

1

2
log(1 + ϑ) +

(x1 + x2)
2 − ϑ

2(1 + ϑ)
. (A.5)

Setting x1 ← x1i, x2 ← x2i and Y ← Yi in (A.4) and (A.5) and summing over all i, we conclude that the mean
vector of An is

E
[
An

]
=
√
n

[
C(α) +

‖x1 − κx2‖22 − nα
2n(1 + α)

C(ϑ) +
‖x1 + x2‖22 − nϑ

2n(1 + ϑ)

]T
. (A.6)

From (A.2) and (A.3), we deduce that the variances are

Var
[
j1(x1, x2, Y )

]
= Var

[−αZ2 + 2(x1 − κx2)Z
2(1 + α)

]
=
α2 + 2(x1 − κx2)2

2(1 + α)2
, (A.7)

Var
[
j12(x1, x2, Y )

]
= Var

[−ϑZ2 + 2(x1 + x2)Z

2(1 + ϑ)

]
=
ϑ2 + 2(x1 + x2)

2

2(1 + ϑ)2
, (A.8)

where we have used Var[Z2] = 2 and Cov[Z2, Z] = EZ3 − (EZ)(EZ2) = 0. The covariance is

Cov
[
j1(x1, x2, Y ), j12(x1, x2, Y )

]
= Cov

[−αZ2 + 2(x1 − κx2)Z
2(1 + α)

,
−ϑZ2 + 2(x1 + x2)Z

2(1 + ϑ)

]
(A.9)

=
1

4(1 + α)(1 + ϑ)

{
E
[
(−αZ2 + 2(x1 − κx2)Z)(−ϑZ2 + 2(x1 + x2)Z)

]

− E
[
− αZ2 + 2(x1 − κx2)Z

]
E
[
− ϑZ2 + 2(x1 + x2)Z

]}
(A.10)

=
3αϑ+ 4(x1 − κx2)(x1 + x2)− αϑ

4(1 + α)(1 + ϑ)
=
αϑ+ 2(x21 + (1− κ)x1x2 − κx22)

2(1 + α)(1 + ϑ)
(A.11)

Setting x1 ← x1i, x2 ← x2i and Y ← Yi in (A.7), (A.8) and (A.11) and summing over all i, we conclude that
covariance matrix of An is

Cov
[
An

]
=




nα2 + 2‖x1 − κx2‖22
2n(1 + α)2

nαϑ+2(‖x1‖22+(1−κ)〈x1,x2〉−κ‖x2‖22)
2n(1 + α)(1 + ϑ)

nαϑ+2(‖x1‖22+(1−κ)〈x1,x2〉−κ‖x2‖22)
2n(1 + α)(1 + ϑ)

nϑ2 + 2‖x1 + x2‖22
2n(1 + ϑ)2


 .

(A.12)

In the remainder of the section, we analyze several third absolute moments associated with An appearing in the
univariate [30, Sec. XVI.5] and multivariate Berry-Esseen theorems [28], [29] (see Appendix B). The following
lemma will be used to replace any given (x1,x2) pair by an “equivalent” pair (in the sense that the statistics of
An are unchanged) for which the corresponding third moments have the desired behavior. This is analogous to
Polyanskiy et al. [8], where for the AWGN channel, one can use a spherical symmetry argument to replace any
given sequence x such that ‖x‖22 = nS with a fixed sequence (

√
S, · · · ,

√
S).

Lemma 9. The joint distribution of An depends on (x1,x2) only through the powers ‖x1‖22, ‖x2‖22 and the inner
product 〈x1,x2〉.



24

Proof: This follows by substituting (A.2)–(A.3) into (A.1) and using the symmetry of the additive noise
sequence Z = (Z1, . . . , Zn). For example, from (A.2), the first entry of An can be written as

1√
n

(
n

2
log(1 + α)− 1

2
‖Z‖22 +

1

2(1 + α)
‖x1 − κx2 + Z‖22

)
, (A.13)

and the desired result follows by writing

‖x1 − κx2 + Z‖2 = ‖x1‖2 + κ2‖x2‖2 + ‖Z‖2 − 2κ〈x1,x2〉+ 2〈x1,Z〉 − 2κ〈x2,Z〉. (A.14)

Since Z is i.i.d. Gaussian, the last two terms depend on (x1,x2) only through ‖x1‖22 and ‖x2‖22.
We now provide lemmas showing that, upon replacing a given pair (x1,x2) with an equivalent pair using

Lemma 9 if necessary, the corresponding third moments have the desired behavior. It will prove useful to work
with the empirical correlation coefficient

ρemp(x1,x2) :=
〈x1,x2〉
‖x1‖2‖x2‖2

. (A.15)

It is easily seen that Lemma 9 remains true when the inner product 〈x1,x2〉 is replaced by this normalized quantity.

Lemma 10. For any fixed ρ̃ ∈ [−1, 1], there exists a sequence of pairs (x1,x2) (indexed by increasing lengths n)
such that ‖x1‖22 = nS1, ‖x2‖22 = nS2, ρemp(x1,x2) = ρ̃, and

T̃n :=

n∑

i=1

E
[∥∥∥ 1√

n

(
j(x1i, x2i, Yi)− E[j(x1i, x2i, Yi)]

)∥∥∥
3

2

]
= O

(
1√
n

)
, (A.16)

where the O
(

1√
n

)
term is uniform in ρ̃ ∈ [−1, 1].

Proof: By using the fact that ‖v‖2 ≤ ‖v‖1 and (|a|+ |b|)3 ≤ 4|a|3 + 4|b|3, the following bounds hold:

T̃n ≤
n∑

i=1

E
[∥∥∥ 1√

n

(
j(x1i, x2i, Yi)− E[j(x1i, x2i, Yi)]

)∥∥∥
3

1

]
(A.17)

≤ 4

n∑

i=1

E
[∣∣∣ 1√

n

(
j1(x1i, x2i, Yi)− E[j1(x1i, x2i, Yi)]

)∣∣∣
3
]

+ 4

n∑

i=1

E
[∣∣∣ 1√

n

(
j12(x1i, x2i, Yi)− E[j12(x1i, x2i, Yi)]

)∣∣∣
3
]
. (A.18)

We now specify (x1,x2) whose powers and correlation match those given in the lemma statement. Assuming for
the time being that |ρ̃| ≤ n−1

n , we choose

x1 =
(√

S1, · · · ,
√
S1
)

(A.19)

x2 =
(√

S2(1 + η),
√
S2, · · · ,

√
S2,−

√
S2(1− η),−

√
S2, · · · ,−

√
S2
)

(A.20)

where η ∈ (−1, 1), and x2 contains k ≥ 1 negative entries and n − k ≥ 1 positive entries. It is easily seen that
‖x1‖22 = nS1 and ‖x2‖22 = nS2, as desired. Furthermore, we can choose k and η to obtain the desired correlation
since

〈x1,x2〉 =
(
n− 2(k − 1) +

√
1 + η −

√
1− η

)√
S1S2, (A.21)

and since the range of the function f(η) :=
√

1 + η −√1− η for η ∈ (−1, 1) is given by (−
√

2,
√

2).
Using (A.2)–(A.3), it can easily be verified that the third absolute moment of each entry of j(x1, x2, Y ) (i.e.

E
∣∣j1(x1, x2, Y )−E[j1(x1, x2, Y )]

∣∣3 and E
∣∣j12(x1, x2, Y )−E[j12(x1, x2, Y )]

∣∣3) is bounded above by some constant
for any (x1, x2) = (

√
S1,±

√
cS2) (c ∈ (0, 2)). We thus obtain (A.16) using (A.18). The proof is concluded by

noting that a similar argument applies for the case ρ̃ ∈ (n−1n , 1] by replacing (A.20) by

x2 =
(√

S2(1 + η),
√
S2(1− η),

√
S2, · · · ,

√
S2
)
, (A.22)

and similarly (with negative entries) when ρ̃ ∈ [−1, n−1n ).
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Lemma 11. For any pair of sequences {ρn}n≥1 ⊂ [−1, 1] and {ρ̃n}n≥1 ⊂ [−1, 1] such that ρn, ρ̃n → 1 with
1 − ρ̃n = Θ(1 − ρn), there exists a sequence of vectors (x1,x2) (indexed by increasing lengths n) with the
properties ‖x1‖22 = nS1, ‖x2‖22 = nS2, ρemp(x1,x2) = ρ̃n, and they satisfy

T̃1,n :=

n∑

i=1

E
[∣∣∣ 1√

n

(
j1(x1i, x2i, Yi)− E[j1(x1i, x2i, Yi)]

)∣∣∣
3
]

= O

(
1− ρ̃n√

n

)
, (A.23)

where the information density is computed with respect to ρn, i.e. j1 is defined in (27) with input distribution
PX1,X2

= N (0,Σ(ρn)).

Proof: We make use of the notation and definitions in the proof of Lemma 10, using a subscript to denote
dependence on n, e.g. kn. We again focus on the case that |ρ̃n| ≤ n−1

n and we choose (x1,x2) according to
(A.19)–(A.20). The remaining cases are handled similarly (e.g. using (A.22)) and are thus omitted.

Inverting (A.21), we have kn = n
2 (1 − ρ̃n) + O(1), and thus the entries corresponding to x2 6=

√
S2 in (A.20)

contribute an additive O
(1−ρ̃n√

n

)
term to the summation in (A.23). For the remaining entries, where (x1, x2) =

(
√
S1,
√
S2), we note from (A.2) that the third absolute moment of j(x1, x2, Y ) is given by

E
[∣∣j(x1, x2, Y )− E

[
j(x1, x2, Y )

]∣∣3
]

= E

[∣∣∣∣
−α(Z2 − 1) + 2(x1 − κx2)Z

2(1 + α)

∣∣∣∣
3
]

(A.24)

≤ 2
(
|α|3E

[
|Z2 − 1|3

]
+ 8
(√

S1 − κ
√
S2
)3E
[
|Z|3

])
(A.25)

= Θ
(
|α|3 +

(√
S1 − κ

√
S2
)3) (A.26)

= Θ(1− ρ̃n), (A.27)

where (A.25) follows because α ≥ 0 and |a+b|3 ≤ 4(|a|3+|b|3), and (A.27) follows by substituting α = S1(1−ρ2)
and κ = ρ

√
S1/S2, and applying first-order Taylor expansions in 1 − ρ̃n (recall that 1 − ρn = Θ(1 − ρ̃n) by

assumption). From (A.27), we conclude that the entries where (x1, x2) = (
√
S1,
√
S2) in (A.19)–(A.20) contribute

an additive O
(1−ρ̃n√

n

)
term to the summation in (A.23), thus yielding the desired result.

Recall the definition of T1(ρ) in (112) which we restate here for the reader’s convenience:

T1(ρ) := E
[
E
[∣∣j1(X1, X2, Y )− E[j1(X1, X2, Y )]

∣∣3 ∣∣X1, X2

]]
. (A.28)

The distribution of (X1, X2) above is N (0,Σ(ρ)) and the information density j1 is also defined with respect to ρ.

Lemma 12. For any sequence {ρn}n≥1 satisfying ρn → 1, we have

T1(ρn) = O(1− ρn). (A.29)

Proof: We upper bound t1(x1, x2) using the Cauchy-Schwarz and arithmetic-geometric mean inequalities as
follows:

t1(x1, x2) = E
[∣∣j1(x1, x2, Y )− E[j1(x1, x2, Y )]

∣∣3] (A.30)

≤
√
E
[(
j1(x1, x2, Y )− E[j1(x1, x2, Y )]

)2]E
[(
j1(x1, x2, Y )− E[j1(x1, x2, Y )]

)4] (A.31)

≤ 1

2

(
E
[(
j1(x1, x2, Y )− E[j1(x1, x2, Y )]

)2]
+ E

[(
j1(x1, x2, Y )− E[j1(x1, x2, Y )]

)4])
. (A.32)

Now, by (A.7), the variance of j1(x1, x2, Y ) is

m2(x1, x2) := E
[(
j1(x1, x2, Y )− E[j1(x1, x2, Y )]

)2]
=
α2 + 2(x1 − κx2)2

2(1 + α)2
. (A.33)

By a similar calculation, we deduce that the centralized fourth moment of j1(x1, x2, Y ) is

m4(x1, x2) := E
[(
j1(x1, x2, Y )− E[j1(x1, x2, Y )]

)4]
=

15α4 + 60α2(x1 − κx2)2 + 12(x1 − κx2)4
4(1 + α)4

. (A.34)
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Taking the expectation of (A.33) with respect to (X1, X2) ∼ N (0,Σ(ρ)) yields

E[m2(X1, X2)] =
α(2 + α)

2(1 + α)2
(A.35)

where we used the fact that X1 − κX2 ∼ N (0, α). Similarly, taking the expectation of (A.34) yields

E[m4(X1, X2)] =
3α2(5α2 + 20α+ 12)

4(1 + α)4
(A.36)

where we used the fact that E
[
(X1−κX2)

4
]

= 3α2. Now, observe that since α = α(ρ) = S1(1−ρ2) is continuously
differentiable in ρ, so are E[m2(X1, X2)] and E[m4(X1, X2)]. Moreover E[m2(X1, X2)] and E[m4(X1, X2)] are
equal to zero when ρ = 1 (and hence α = 0). Consequently, by (A.32) we know that T1(ρ) is upper bounded by a
continuously differentiable function in ρ and it evaluates to zero when ρ = 1. We conclude, by first-order Taylor
expansions in ρ in the vicinity of ρ = 1, that (A.29) holds.

APPENDIX B
THE MULTIVARIATE BERRY-ESSEEN THEOREM

In this section, we state a version of the multivariate Berry-Esseen theorem [28], [29] that is suited for our needs
in this paper. The following is a restatement of Corollary 38 in [34].

Theorem 13. Let U1, . . . ,Un be independent, zero-mean random vectors in Rd. Let Ln := 1√
n

(U1 + · · ·+ Un),
Assume V := Cov(Ln) is positive definite with minimum eigenvalue λmin(V) > 0. Let t := 1

n

∑n
i=1 E

[
‖Ui‖32

]
and

let Z be a zero-mean Gaussian random vector with covariance V. Then, for all n ∈ N,

sup
C∈Cd

∣∣Pr(Ln ∈ C )− Pr(Z ∈ C )
∣∣ ≤ kd t

λmin(V)3/2
√
n
, (B.1)

where Cd is the family of all convex, Borel measurable subsets of Rd, and kd is a function only of the dimension
d (e.g., k2 = 265).

APPENDIX C
PROOF OF LEMMA 5

Fix (z1, z2) ∈ Ψ−1
(
V, ε+λn) and define Z = (Z1, Z2) ∼ N (0,V). Since Ψ−1

(
V, ε) is monotonic in the sense

that Ψ−1
(
V, ε) ⊂ Ψ−1

(
V, ε′) for ε ≤ ε′, it suffices to verify that (z1, z2) belongs to the set on the right-hand side

of (67) for those (z1, z2) on the boundary of Ψ−1
(
V, ε+ λn). That is (cf. (31)),

Pr
(
Z1 ≤ −z1, Z2 ≤ −z2

)
= 1− (ε+ λn). (C.1)

Define νn := inf
{
ν > 0 : (−z1 − ν,−z2 − ν) ∈ Ψ−1(V, ε)

}
. We need to show that νn = o(1) is bounded above

by some linear function of λn. By using (C.1) and the definition of νn, we see that

λn = Pr
(
Z1 ∈ [−z1 − νn,−z1] ∪ Z2 ∈ [−z2 − νn,−z2]

)
(C.2)

≥ max
j=1,2

{
Φ

(
−zj√
Vjj

)
− Φ

(
−zj − νn√

Vjj

)}
. (C.3)

The assumption that V is a non-zero positive-semidefinite matrix ensures that at least one of Vjj , j = 1, 2 is
non-zero. We have the lower bound

Φ

( −z√
V

)
− Φ

(−z − νn√
V

)
≥ νn√

V
min {N (z; 0, V ),N (z + νn; 0, V )} . (C.4)

Hence, for all n large enough, each of the terms in {·} in (C.3) is bounded below by νnf(zj , Vjj) for j = 1, 2 where
f(z, V ) := 1

2
√
V
N (z; 0, V ) satisfies limz→±∞ f(z, V ) = 0. Hence, νn ≤ λn minj=1,2{f(zj , Vjj)

−1}. For every
fixed ε ∈ (0, 1), every (z1, z2) ∈ Ψ−1

(
V, ε+λn) satisfies min{|z1|, |z2|} <∞, and hence minj=1,2{f(zj , Vjj)

−1}
is finite. This concludes the proof.
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APPENDIX D
PROOF OF LEMMA 6

Recall that ρ̂n → 1. We start by proving the inner bound on Ψ−1(V(ρ̂n), ε). Let (w1, w2) be an arbitrary element
of the left-hand-side of (71), i.e. w1 ≤ −bn and w2 ≤

√
V12(1)Φ−1(ε + an) − bn. Define the random variables

(Z1,n, Z2,n) ∼ N (0,V(ρ̂n)) and the sequence bn := (1− ρ̂n)1/4. Consider

Pr
(
Z1,n ≤ −w1, Z2,n ≤ −w2

)
≥ Pr

(
Z1,n ≤ bn, Z2,n ≤ −

(√
V12(1)Φ−1(ε+ an)− bn

))
(D.1)

≥ Pr
(
Z2,n ≤ −

(√
V12(1)Φ−1(ε+ an)− bn

))
− Pr

(
Z1,n > bn

)
(D.2)

= Φ

(
−
(√

V12(1)Φ−1(ε+ an)− bn
)

√
V12(ρ̂n)

)
− Φ

(
−bn√
V1(ρ̂n)

)
. (D.3)

From the choice of bn and the fact that
√
V1(ρ̂n) = Θ(

√
1− ρ̂n) (cf. (76)), the argument of the second term scales

as −(1− ρ̂n)−1/4 which tends to −∞. Hence, the second term vanishes. We may thus choose a vanishing sequence
an so that the expression in (D.3) equals 1−ε. Such a choice satisfies an = Θ(bn) = Θ((1− ρ̂n)1/4), in accordance
with the lemma statement. From the definition in (31), we have proved that (w1, w2) ∈ Ψ−1(V(ρ̂n), ε) for this
choice of (an, bn).

For the outer bound on Ψ−1(V(ρ̂n), ε), let (u1, u2) be an arbitrary element of Ψ−1(V(ρ̂n), ε). By definition,

Pr(Z1,n ≤ −u1, Z2,n ≤ −u2) ≥ 1− ε, (D.4)

where (Z1,n, Z2,n) ∼ N (0,V(ρ̂n)) as above. Thus,

1− ε ≤ Pr(Z2,n ≤ −u2) = Φ

(
−u2√
V12(ρ̂n)

)
. (D.5)

This leads to
u2 ≤

√
V12(ρ̂n)Φ−1(ε) =

√
V12(1)Φ−1(ε) + c′n (D.6)

for some c′n = Θ(1− ρ̂n), since ρ 7→
√
V12(ρ) is continuously differentiable and its derivative does not vanish at

ρ = 1. Similarly, we have
u1 ≤

√
V1(ρ̂n)Φ−1(ε) = c′′n (D.7)

for some c′′n = Θ(
√

1− ρ̂n), since V1(1) = 0 and
√
V1(ρ̂n) = Θ(

√
1− ρ̂n) by (76). Letting cn := max{|c′n|, |c′′n|} =

Θ(
√

1− ρ̂n), we deduce that (u1, u2) belongs to the rightmost set in (71). This completes the proof.
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